Quantum Mechanics Approach for Metal-Organic Frameworks Deformation Effect on Carbon Capture Performance: A Density Functional Theory Study

Krisna Dwipa Muhdi, Ahmad Atif Fikri

Abstract


Increasing carbon dioxide (CO₂) emissions from fossil fuel combustion demand the development of effective and efficient carbon capture technologies. Metal-Organic Frameworks (MOFs) are excellent candidates as adsorbent materials because they have uniform pores, specific surface area, and can modified according to purpose. However, performance of MOFs may decrease due to structural deformation during  adsorption-desorption process, especially under extreme conditions. This study uses a quantum mechanical approach, namely Density Functional Theory (DFT), to analyze effect of deformation, specifically hMOF-13, on its performance in CO₂ adsorption. Through modeling the atomic structure of hMOF-13, an understanding of the quantum interactions between atoms, changes in position of atoms and cells due to deformation is obtained. Simulation results show that mechanical deformation of hMOF-13 decreases CO₂ adsorption performance through pore narrowing and electrostatic charge redistribution. In addition, excessive deformation can trigger structural failures that reduce regeneration cycles and lower carbon capture efficiency. Insights from this study can guide the subsequent development of MOFs with enhanced mechanical resistance, contributing to the optimization of industrial-scale carbon capture processes. By improving the structural stability of MOFs, industries can achieve higher adsorption efficiency, longer material life, and reduced operational costs, making carbon capture technology more feasible and sustainable.


Full Text:

PDF

References


X. Cheng, Y. Liao, Z. Lei, J. Li, X. Fan, and X. Xiao, “Multi-scale design of MOF-based membrane separation for CO2/CH4 mixture via integration of molecular simulation, machine learning and process modeling and simulation,” J. Memb. Sci., vol. 672, no. July 2022, p. 121430, 2023, doi: 10.1016/j.memsci.2023.121430.

A. A. Fikri, I. Fadlika, A. N. Saeful, and K. D. Muhdi, “Heuristic Approach to Comparing the Environmental Impacts of Carbon Nanotube Production Methods,” J. Mech. Eng. Sci. Technol., vol. 8, no. 1, pp. 199–214, 2024, doi: 10.17977/um016v8i12024p199.

A. M. Yousef, W. M. El-Maghlany, Y. A. Eldrainy, and A. Attia, “New approach for biogas purification using cryogenic separation and distillation process for CO2 capture,” Energy, vol. 156, pp. 328–351, 2018, doi: 10.1016/j.energy.2018.05.106.

F. Chen et al., “Carbon dioxide capture in gallate-based metal-organic frameworks,” Sep. Purif. Technol., vol. 292, no. March, p. 121031, 2022, doi: 10.1016/j.seppur.2022.121031.

M. A. Morales Mora, C. P. Vergara, M. A. Leiva, S. A. Martínez Delgadillo, and E. R. Rosa-Domínguez, “Life cycle assessment of carbon capture and utilization from ammonia process in Mexico,” J. Environ. Manage., vol. 183, pp. 998–1008, 2016, doi: 10.1016/j.jenvman.2016.09.048.

Y. J. Park, S. Yoon, and S. E. Jerng, “Machine learning of metal-organic framework design for carbon dioxide capture and utilization,” J. CO2 Util., vol. 89, no. September, p. 102941, 2024, doi: 10.1016/j.jcou.2024.102941.

S. K. Shivaranjani and A. Gandhimathi, “Analysis and assessment of gaseous pollutants along high traffic roads (NH 948) in Coimbatore city, India,” Glob. Nest J., vol. 25, no. 10, pp. 102–109, 2023, doi: 10.30955/gnj.005181.

J. Hu, Y. Liu, J. Liu, and C. Gu, “Computational Screening of Alkali, Alkaline Earth, and Transition Metals Alkoxide-Functionalized Metal-Organic Frameworks for CO2 Capture,” J. Phys. Chem. C, vol. 122, no. 33, pp. 19015–19024, 2018, doi: 10.1021/acs.jpcc.8b05334.

T. D. Burns et al., “Prediction of MOF Performance in Vacuum Swing Adsorption Systems for Postcombustion CO2 Capture Based on Integrated Molecular Simulations, Process Optimizations, and Machine Learning Models,” Environ. Sci. Technol., vol. 54, no. 7, pp. 4536–4544, 2020, doi: 10.1021/acs.est.9b07407.

S. Parshamoni, S. Sanda, H. S. Jena, K. Tomar, and S. Konar, “Exploration of structural topologies in metal-organic frameworks based on 3-(4-carboxyphenyl)propionic acid, their synthesis, sorption, and luminescent property studies,” Cryst. Growth Des., vol. 14, no. 4, pp. 2022–2033, 2014, doi: 10.1021/cg500149s.

P. Kanoo et al., “Crystal Dynamics in Multi-stimuli-Responsive Entangled Metal–Organic Frameworks,” Chem. - A Eur. J., vol. 22, no. 44, pp. 15864–15873, 2016, doi: 10.1002/chem.201602087.

W. S. Jeong et al., “Modeling adsorption properties of structurally deformed metal–organic frameworks using structure–property map,” Proc. Natl. Acad. Sci. U. S. A., vol. 114, no. 30, pp. 7923–7928, 2017, doi: 10.1073/pnas.1706330114.

J. S. M. Anderson, L. Massa, and C. F. Matta, “Non-Nuclear maxima and the universality of Bright Wilson’s justification of the first Hohenberg Kohn theorem revisited,” Chem. Phys. Lett., vol. 780, no. August, 2021, doi: 10.1016/j.cplett.2021.138940.

D. Nazarian, J. S. Camp, and D. S. Sholl, “A Comprehensive Set of High-Quality Point Charges for Simulations of Metal-Organic Frameworks,” Chem. Mater., vol. 28, no. 3, pp. 785–793, 2016, doi: 10.1021/acs.chemmater.5b03836.

J. L. Mancuso, A. M. Mroz, K. N. Le, and C. H. Hendon, “Electronic Structure Modeling of Metal-Organic Frameworks,” Chem. Rev., vol. 120, no. 16, pp. 8641–8715, 2020, doi: 10.1021/acs.chemrev.0c00148.

C. G. Piscopo and S. Loebbecke, “Strategies to Enhance Carbon Dioxide Capture in Metal-Organic Frameworks,” Chempluschem, vol. 85, no. 3, pp. 538–547, 2020, doi: 10.1002/cplu.202000072.

J. Liu, P. K. Thallapally, B. P. Mc Grail, D. R. Brown, and J. Liu, “Progress in adsorption-based CO2 capture by metal–organic frameworks,” Chem. Soc. Rev., vol. 41, no. 6, pp. 2308–2322, 2012, doi: 10.1039/c1cs15221a.

Q. Zhao, Z. Ren, P. Zhao, and K. Yoshida, “Exact-exchange relativistic density functional theory in three-dimensional coordinate space,” Phys. Lett. Sect. B Nucl. Elem. Part. High-Energy Phys., vol. 860, no. December 2024, p. 139196, 2025, doi: 10.1016/j.physletb.2024.139196.

N. S. Bobbitt et al., “MOFX-DB: An Online Database of Computational Adsorption Data for Nanoporous Materials,” J. Chem. Eng. Data, vol. 68, no. 2, pp. 483–498, Feb. 2023, doi: 10.1021/acs.jced.2c00583.

C. Xue, T. Zhang, and D. Xiao, “Output related fault detection and diagnosis based on multi block modified orthogonal Broyden-Fletcher-Goldfarb-Shanno algorithm,” Neurocomputing, vol. 607, no. 3, p. 128350, 2024, doi: 10.1016/j.neucom.2024.128350.

H. Zhang et al., “Advanced orthogonal moth flame optimization with Broyden–Fletcher–Goldfarb–Shanno algorithm: Framework and real-world problems,” Expert Syst. Appl., vol. 159, 2020, doi: 10.1016/j.eswa.2020.113617.

D. Jadav et al., “Mesoporous silica supported ionic liquid materials with high efficacy for CO2 adsorption studies,” J. Ion. Liq., vol. 4, no. 2, p. 100102, 2024, doi: 10.1016/j.jil.2024.100102.

J. M. Rimsza and T. M. Nenoff, “Critical role of solvation on CC13 porous organic cages for design of porous liquids,” J. Mol. Liq., vol. 401, no. April, p. 124731, 2024, doi: 10.1016/j.molliq.2024.124731.

A. Nalaparaju, M. Khurana, S. Farooq, I. A. Karimi, and J. W. Jiang, “CO2 capture in cation-exchanged metal-organic frameworks: Holistic modeling from molecular simulation to process optimization,” Chem. Eng. Sci., vol. 124, pp. 70–78, 2015, doi: 10.1016/j.ces.2014.09.054.

I. Majchrzak-Kucęba and D. Bukalak-Gaik, “Regeneration performance of metal–organic frameworks: TG-Vacuum tests,” J. Therm. Anal. Calorim., vol. 125, no. 3, pp. 1461–1466, 2016, doi: 10.1007/s10973-016-5624-2.

X. Guo, Z. Zhou, C. Chen, J. Bai, C. He, and C. Duan, “New rht-Type Metal−Organic Frameworks Decorated with Acylamide Groups for Efficient Carbon Dioxide Capture and Chemical Fixation from Raw Power Plant Flue Gas,” ACS Appl. Mater. Interfaces, vol. 8, no. 46, pp. 31746–31756, 2016, doi: 10.1021/acsami.6b13928.

D. Wang et al., “Enhancing reversibility of LiNi0.5Mn1.5O4 by regulating surface oxygen deficiency,” Carbon Energy, vol. 5, no. 11, pp. 1–9, 2023, doi: 10.1002/cey2.338.

H. Kang et al., “Enhancing CO2 Reduction Efficiency on Cobalt Phthalocyanine via Axial Ligation,” ChemCatChem, vol. 15, no. 14, 2023, doi: 10.1002/cctc.202300576.

A. S. Morshedy, H. M. Abd El Salam, A. M. A. El Naggar, and T. Zaki, “Hydrogen Production and in Situ Storage through Process of Water Splitting Using Mono/Binary Metal-Organic Framework (MOF) Structures as New Chief Photocatalysts,” Energy and Fuels, vol. 34, no. 9, pp. 11660–11669, 2020, doi: 10.1021/acs.energyfuels.0c01559.

J. Du et al., “Hard-and-Soft Integration Strategy for Preparation of Exceptionally Stable Zr(Hf)-UiO-66 via Thiol-Ene Click Chemistry,” ACS Appl. Mater. Interfaces, vol. 12, no. 25, pp. 28576–28585, 2020, doi: 10.1021/acsami.0c10368.

F. Giorgi et al., “The influence of inter-particle forces on diffusion at the nanoscale,” Sci. Rep., vol. 9, no. 1, pp. 1–6, 2019, doi: 10.1038/s41598-019-48754-5.

S. Katnagallu et al., “Impact of local electrostatic field rearrangement on field ionization,” J. Phys. D. Appl. Phys., vol. 51, no. 10, 2018, doi: 10.1088/1361-6463/aaaba6.

K. Zhang, H. Liu, M. Ma, H. Xu, and H. Fang, “Multiscale Fractal Characterization of Pore–Fracture Structure of Tectonically Deformed Coal Compared to Primary Undeformed Coal: Implications for CO2 Geological Sequestration in Coal Seams,” Processes, vol. 11, no. 10, 2023, doi: 10.3390/pr11102934.

L. Kulakova, G. Arampatzis, P. Angelikopoulos, P. Hadjidoukas, C. Papadimitriou, and P. Koumoutsakos, “Data driven inference for the repulsive exponent of the Lennard-Jones potential in molecular dynamics simulations,” Sci. Rep., vol. 7, no. 1, pp. 1–10, 2017, doi: 10.1038/s41598-017-16314-4.

N. Inui, “Equilibrium shape of a suspended graphene sheet under electrostatic and van der Waals forces,” J. Phys. D. Appl. Phys., vol. 51, no. 11, 2018, doi: 10.1088/1361-6463/aaad9b.

S. Kawai et al., “Extended halogen bonding between fully fluorinated aromatic molecules,” ACS Nano, vol. 9, no. 3, pp. 2574–2583, 2015, doi: 10.1021/nn505876n.

S. Hamad, S. R. G. Balestra, R. Bueno-Perez, S. Calero, and A. R. Ruiz-Salvador, “Atomic charges for modeling metal-organic frameworks: Why and how,” J. Solid State Chem., vol. 223, pp. 144–151, 2015, doi: 10.1016/j.jssc.2014.08.004.

M. K. Taylor et al., “Tuning the Adsorption-Induced Phase Change in the Flexible Metal-Organic Framework Co(bdp),” J. Am. Chem. Soc., vol. 138, no. 45, pp. 15019–15026, 2016, doi: 10.1021/jacs.6b09155.




DOI: https://doi.org/10.31284/j.jmesi.2025.v5i1.7415

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.