Aerodynamic Analysis of Diffuser with Airfoil-Based Curved Geometry Across Various Prototypes

Galang Baruna Ramadhan, I Kade Wiratama, I Wayan Joniarta

Abstract


The diffuser can increase air velocity in wind turbines by utilizing pressure differences, particularly in small-scale wind turbines. However, some previous research still uses a simple diffuser shape. One alternative diffuser shape is using the airfoil, the wortmann Fx 63-137 airfoil has high lift, exhibits soft stall characteristics, and has excellent overall performance. This study aims to analyze the wind velocity and wind power output generated by an airfoil-based diffuser. Aerodynamic simulations were used with an inlet wind speed of 5.6 m/s. The diffuser has a diameter of 1020 mm, with length to diameter ratios of 0.1, 0.137, 0.221, and 0.371, with angles of attack from 0° to 8° in 2° increments. The results show that the diffuser 0.371 ratio at an 8° angle of attack achieved the highest wind speed of 10.22 m/s, it generate 513 watts. Conversely, the lowest wind speed was observed with a 0.1 ratio at an 8° angle, where the velocity reached 6.58 m/s, producing 137 watts of wind power. Those findings indicate that diffuser length is directly proportional to wind velocity. However, variation in the angle of attack result in maximum wind velocity at specific angles, and wind power output is directly proportional to wind velocity.


Full Text:

PDF

References


F.A Muhajir and N. Sinaga, “Tinjauan Pemanfaatan Energi Bayu Sebagai Pembangkit Listrik di Provinsi Sulawesi Selatan ,” JURNAL TEKNIKA, vol. 15, no. 01, pp. 55–61, Jun. 2021.

S. Bektiarso, I. K. Mahardika, N. M. Anggraeni, R. E. Kinasih, and N. A. Jannah, “Kemampuan Alat Kincir Angin Sederhana Dalam Menghasilkan Listrik ,” Jurnal Ilmiah Wahana Pendidikan, vol. 9, no. 3, pp. 488–493, Feb. 2023.

A. Fauzzy, C. D. Yue, C. C. Tu, and T. H. Lin, “ Understanding the Potential of Wind Farm Exploitation in Tropical Island Countries: A Case for Indonesia,” Energies (Basel), vol. 14, no. 2652, pp. 1–26, May 2021.

A. Sebastiani, F. Castelani, G. Crasto, and A. Segalani, “Data Analysis and Simulation of the Lillgrund Wind Farm,” Wiley, pp. 634–648, Nov. 2020.

Sahid, Mulyono, T. Prasetyo, D. Hendrawati, Y. M. Safaruudin, and M. F. alyasa, “Turbin Angin Poros Horizontal Tipe Flat Sudu Banyak Taper 4:5 dan Sudut Keluaran 25°,” Jurnal Rekayasa Mesin, vol. 17, no. 1, pp. 169–178, Apr. 2022.

M. A. Rahamatian, P. H. Tari, M. Mojaddam, and S. Majidi, “Numerical and Experimental Study of the Ducted Diffuser Effect on Improving the Aerodynamic Performance of a Micro Horizontal Axis Wind Turbine,” Elsevier, vol. 245, pp. 1–27, Apr. 2022.

B. A. J. Al-Quraishi et al., “CFD Investigation of Empty Flanged Diffuser Augmented Wind Turbine ,” Penerbit UTMH, vol. 12, no. 3, pp. 22–32, 2020.

A. Susandi, F. Arifin, and R. D. Kusumanto, “Simulation of Diffuser Parameters in the Performance of Horizontal Axis Wind Turbine using Computational Fluid Dynamics ,” Technology Reports of Kansai University, vol. 63, no. 06, pp. 7739–7749, Jun. 2021.

A. Agha, H. N. Chaudry, and F. Wang, “Determining the Augmentation Ratio and Response Behaviour of a Diffuser Augmented Wind Turbine (DAWT) ,” Elsevier, vol. 37, pp. 1–32, Feb. 2020.

M. M. Naji and B. A. Jabbar, “Diffuser Augmented Wind Turbine: A Review Study ,” AIP Publishing, vol. 3051, no. 1, pp. 1–15, Feb. 2024.

A. Alanis, J. A. Franco, S. Piedra, and J. C. Jauregui, “A novel high performance diffuser design for small DAWT’s by using a blunt trailing edge airfoil,” Techno Press, vol. 32, no. 1, pp. 1–7, Jan. 2020.

A. M. Elyased, “Design Optimization of Diffuser Augmented Wind Turbine,” Akademia Baru, vol. 13, no. 8, pp. 45–59, Aug. 2021.

I. K. Wiratama, I. M. Suartika, I. W. Joniarti, I. M. Mara, I. M. Nuarsa, and M. Ansori, “Analysis Aerodynamic Performance Airfoil WORTMANN FX63-137inDifferent Reynolds Number,” Atlantis Press, pp. 125–31, Dec. 2022.

M. H. G. Syafei, R. T. Indrawati, and T. A. Farhan, “Implementation of the Airfoil parameterization PARSEC Method in Python,” Jurnal Rekayasa Mesin, vol. 17, no. 3, pp. 485–494, Dec. 2022.

Y. Ohya and T. Karasaduni, “A Shrouded Wind Turbine Generating High Output Power with Wind-lens Technology,” Energies (Basel), vol. 3, no. 4, pp. 634–649, Mar. 2010.

T. Matsushima, S. Takagi, and S. Muroyama, “Characteristics of a highly efficient propeller type small wind turbine with a diffuser,” Elsevier, vol. 31, no. 9, pp. 1343–1354, Jul. 2006.

M. M. Darpe, S. K. Bandekar, and S. V. Panjari, “Design and Optimization of a Diffuser Augmented Wind Turbine (Wind Lens Turbine) using CFD,” International Research Journal of Engineering and Technology (IRJET), vol. 7, no. 4, pp. 962–968, Apr. 2020.

K. Watanabe and Y. Ohya, “ A Simple Theory and Performance Prediction for a Shrouded WindTurbine with a Brimmed Diffuser,” Energies (Basel), vol. 14, no. 3661, pp. 1–15, Jun. 2021.

Y. P. Andriyani and A. K. Munashta, “Analisis Potensi Dan Pemetaan Teknologi Turbin Angin Di Seluruh Indonesia,” Analisis Potensi dan Pemetaan Teknologi Turbin Angin di Seluruh Indonesia, vol. 3, no. 2, pp. 77–82, 2022.

E. E. Ambarita, Harinaldi, R. Azhari, and R. Irwansyah, “Experimental study on the optimum design of diffuser augmented horizontal-axis tidal turbine,” Clean Energy, vol. 6, no. 5, pp. 776–786, Nov. 2022.

F. Arifin et al., “Modelling Design Diffuser Horizontal Axis Wind Turbine,” Atlantis Press, vol. 9, pp. 193–196, 2021.

Michael S. Selig and Bryan D. McGranahan, “Wind Tunnel Aerodynamic Tests of Six Airfoils for Use on Small Wind Turbines,” Urbana, Oct. 2004.

M. R. Nur, “Pengembangan Model Diffuser Pada Berbagai Tinggi Flange Dengan Metode Komputasi Ansys,” Energi, Universitas Mataram, Mataram, 2022.

Sudarma A F and Widianto F, “Studi Numerik Pengaruh Geometri Supply Air Grille serta Variasi Kecepatan Udara Masuk Terhadap Distribusi Temperatur di Dalam Ruangan Terkondisi ,” Jurnal Teknik Mesin, vol. 10, no. 1, pp. 27–37, Feb. 2021.

L. E. N. Putra, S. Sugeng, M. Ridwan, A. Widyandari, and A. K. Yusim, “Analisis Performa Heat Transfer pada Plastic Welding terhadap Sambungan Pelat Perahu Berbahan High Density Polyethylene (HDPE) Menggunakan Finite Element Method ,” Jurnal Rekayasa Mesin, vol. 19, no. 3, pp. 419–430, Dec. 2024.

Prasetiyo A B, fauzun, Azmi A A, Pamuji D S, and Yaqin R I, “Pengaruh Perbedaan Mesh Terstruktur dan Mesh Tidak Terstruktur Pada Simulasi Sistem Pendinginan Mold Injeksi Produk Plastik,” Prosiding Nasional Rekayasa Teknologi Industri dan Informasi , pp. 400–406, Nov. 2018.

Hutauruk R M, “Simulasi numerik tahanan kapal gillnet menggunakan pendekatan computaional fluids dynamics,” Jurnal Perikanan dan Kelautan, vol. 4, pp. 35–47, Jun. 2013.

R. F. Billad, J. Julian, F. Wahyuni, and W. Iskandar, “Numerical Modelling of NACA 0015 Airfoil Under Erosion Condition ,” Jurnal Rekayasa Mesin, vol. 19, no. 2, pp. 199–210, Aug. 2024.

M. S. Hasan and Widayat, “Produksi Hidrogen dengan Memanfaatkan Sumber Daya Energi Surya dan Angin di Indonesia ,” JEBT: Jurnal Energi Baru & Terbarukan, vol. 3, no. 1, pp. 38–48, Apr. 2022.

Ridzuan F, Omar M H, Didane D H, Manshoor B, Abdelaal M A, and Amin A, “Aerodynamic Performance of NACA S809 Wind Turbine Blade Airfoil Using SST K-omega and K-epsilon Turbulence Models ,” Journal of Design for Sustainable and Environment , vol. 6, no. 2, pp. 36–42, Aug. 2024.




DOI: https://doi.org/10.31284/j.jmesi.2025.v5i1.7313

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.