Evaluating the Impact of Alternative Material-Based Catalytic Converters on Automotive Exhaust Emissions
Abstract
Pollution air in cities in Indonesia, such as Jakarta, Tangerang, and Bandung, is especially caused by exhaust emissions from vehicle motorized, like carbon monoxide (CO) and hydrocarbons (HC), which originate from burning material burn the ones that don't perfect. Technological catalytic converters are used to reduce emissions, but converters made from metal have their own cost. This study evaluates exhaust Metallic Catalytic Converter (MCC) technology with alternative materials copper (Cu). The result shows that the MCC Cu exhaust system is significantly more effective in reducing CO and HC emissions compared with exhaust without the original equipment manufacturer (OEM) catalyst and exhaust. The average CO emissions are 2.13 %Vol and HC emissions are 198 ppmVol, lower compared to the second type of exhaust. Findings This shows that MCC Cu exhaust is not only more effective in reducing danger but is also more economical compared to catalytic converters made from metal noble, offering a solution sustainable and affordable for problem pollution air from vehicles.
Full Text:
PDFReferences
IQAir, “Air Quality in Indonesia,” www.iqair.com, 2024. https://www.iqair.com/world-air-quality-ranking (accessed Jun. 04, 2024).
S. Sathyanarayanan, S. Suresh, C. G. Saravanan, and S. Uslu, “Experimental investigation on sucrose/alumina catalyst coated converter in gasoline engine exhaust gas,” Environ. Sci. Pollut. Res., vol. 30, no. 22, pp. 61204–61216, May 2022, doi: 10.1007/s11356-022-20655-7.
D. Sofia, F. Gioiella, N. Lotrecchiano, and A. Giuliano, “Mitigation strategies for reducing air pollution,” Environ. Sci. Pollut. Res., vol. 27, no. 16, pp. 19226–19235, Jun. 2020, doi: 10.1007/s11356-020-08647-x.
G. Syuhada et al., “Impacts of Air Pollution on Health and Cost of Illness in Jakarta, Indonesia,” Int. J. Environ. Res. Public Health, vol. 20, no. 4, p. 2916, Feb. 2023, doi: 10.3390/ijerph20042916.
V. Karthickeyan et al., “Simultaneous reduction of NOx and smoke emissions with low viscous biofuel in low heat rejection engine using selective catalytic reduction technique,” Fuel, vol. 255, p. 115854, Nov. 2019, doi: 10.1016/j.fuel.2019.115854.
Korlantas Polri, “Jumlah Data Kendaraan Per Polda,” 2024. http://rc.korlantas.polri.go.id:8900/eri2017/laprekappolda.php (accessed Jun. 04, 2024).
R. Vignesh and B. Ashok, “Critical interpretative review on current outlook and prospects of selective catalytic reduction system for De-NOx strategy in compression ignition engine,” Fuel, vol. 276, p. 117996, Sep. 2020, doi: 10.1016/j.fuel.2020.117996.
S. R. Ariyanto, R. Wulandari, S. Suprayitno, et al., “The Impact of Chrome Plated Copper Catalytic Converters on Engine Performance was Evaluated by Chassis Dynamometer Experiment,” Media Mesin Maj. Tek. Mesin, vol. 24, no. 1, pp. 43–50, Jan. 2023, doi: 10.23917/mesin.v24i1.19679.
W. Warju, S. R. Ariyanto, A. S. Nugraha, and M. Y. Pratama, “The Effectiveness of the Brass Based Catalytic Converter to Reduce Exhaust Gas Emissions from Four-stroke Motorcycle Engines,” in International Joint Conference on Science and Engineering 2021 (IJCSE 2021) The, 2021, vol. 209, no. Ijcse, pp. 417–422. doi: 10.2991/aer.k.211215.071.
Y. Tan, J. E, C. Kou, C. Feng, and D. Han, “Effects of critical structure parameters on conversion performance enhancement of a Pd–Rh dual-carrier catalytic converter for heavy-duty natural gas engines,” Energy, vol. 303, p. 131934, Sep. 2024, doi: 10.1016/j.energy.2024.131934.
C. Farinango-Herrera, J. Zambrano-Ramón, and E. V. Rojas-Reinoso, “Thermographic Analysis of Exhaust Gas and Emissions by Varying Catalyst Behaviour and Injection Parameters,” Energies, vol. 17, no. 6, p. 1417, Mar. 2024, doi: 10.3390/en17061417.
E. Pucher, A. Gruber, and C. Spitzwieser, “IoT Based Real-World Emission Analysis of Motorcycles,” 2021, pp. 14–23. doi: 10.1007/978-3-030-62784-3_2.
D. Rosenblatt, J. Stokes, C. Caffrey, and K. F. Brown, “Effect of Driving Cycles on Emissions from On-Road Motorcycles,” Apr. 2020. doi: 10.4271/2020-01-0377.
N. X. Khoa and O. Lim, “The effects of combustion duration on residual gas, effective release energy, engine power and engine emissions characteristics of the motorcycle engine,” Appl. Energy, vol. 248, pp. 54–63, Aug. 2019, doi: 10.1016/j.apenergy.2019.04.075.
J. Gao, G. Tian, A. Sorniotti, et al., “Review of thermal management of catalytic converters to decrease engine emissions during cold start and warm up,” Appl. Therm. Eng., vol. 147, no. June 2018, pp. 177–187, 2019, doi: 10.1016/j.applthermaleng.2018.10.037.
L. Robles-Lorite, R. Dorado-Vicente, E. Torres-Jiménez, et al., “Recent Advances in the Development of Automotive Catalytic Converters: A Systematic Review,” Energies, vol. 16, no. 18, p. 6425, Sep. 2023, doi: 10.3390/en16186425.
SNI 09-7118.3-2005, Emisi gas buang – Sumber bergerak – Bagian 3: Cara uji kendaraan bermotor kategori L pada kondisi idle. Indonesia, 2005.
G. Junwu and G. Leyang, “Study on the Simplification Calculation Model of Marine Diesel Engine Exhaust Flow Based on Air-Fuel Ratio,” Math. Probl. Eng., vol. 2022, pp. 1–12, Jun. 2022, doi: 10.1155/2022/2890035.
T. Lee, E. Han, U.-C. Moon, and K. Y. Lee, “Supplementary Control of Air–Fuel Ratio Using Dynamic Matrix Control for Thermal Power Plant Emission,” Energies, vol. 13, no. 1, p. 226, Jan. 2020, doi: 10.3390/en13010226.
S. Dey and N. S. Mehta, “Selection of Manganese oxide catalysts for catalytic oxidation of Carbon monoxide at ambient conditions,” Resour. Environ. Sustain., vol. 1, p. 100003, Sep. 2020, doi: 10.1016/j.resenv.2020.100003.
W. Warju, S. R. Ariyanto, and M. Y. Pratama, “Exhaust Emission Control in Sport Motorcycles: A Comparison of Catalytic Converters with Alternative Metal Materials,” J. Polimesin, vol. 22, no. 1, p. 45, Feb. 2024, doi: 10.30811/jpl.v22i1.4092.
D. C. Montgomery and G. C. Runger, Applied Statistics and Probability for Engineers, Fifth Edit. United States of America: John Wiley & Sons, Inc., 2011. [Online]. Available: www.wiley.com/college/montgomery%5CnEngineering
S. R. Ariyanto, R. Wulandari, Suprayitno, and P. I. Purboputro, “Pengaruh Metallic Catalytic Converter Tembaga Berlapis Chrome Dalam Menurunkan Emisi Gas Buang Mesin Sepeda Motor Empat Langkah,” J. Media Mesin, vol. 23, no. 1, pp. 44–51, 2022, doi: 10.23917/mesin.v23i1.16604.
E. Kritsanaviparkporn, F. M. Baena-Moreno, and T. R. Reina, “Catalytic Converters for Vehicle Exhaust: Fundamental Aspects and Technology Overview for Newcomers to the Field,” Chemistry (Easton)., vol. 3, no. 2, pp. 630–646, May 2021, doi: 10.3390/chemistry3020044.
S. Dey and N. S. Mehta, “Automobile pollution control using catalysis,” Resour. Environ. Sustain., vol. 2, p. 100006, Dec. 2020, doi: 10.1016/j.resenv.2020.100006.
A. K. Milku, F. Attiogbe, C. Atombo, et al., “Evaluating the categorical effect of vehicle characteristics on exhaust emissions,” African Transp. Stud., vol. 2, p. 100008, 2024, doi: 10.1016/j.aftran.2024.100008.
M. D. Garba et al., “CO2 towards fuels: A review of catalytic conversion of carbon dioxide to hydrocarbons,” J. Environ. Chem. Eng., vol. 9, no. 2, p. 104756, Apr. 2021, doi: 10.1016/j.jece.2020.104756.
Z. Zhang et al., “Effects of Methanol Application on Carbon Emissions and Pollutant Emissions Using a Passenger Vehicle,” Processes, vol. 10, no. 3, p. 525, Mar. 2022, doi: 10.3390/pr10030525.
DOI: https://doi.org/10.31284/j.jmesi.2025.v5i1.7287
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.