SISTEM FORECASTING REVENUE HOTEL XYZ MENGGUNAKAN ALGORITMA DECISION TREE

Arfian Fansa Putra Pradana, Teguh Herlambang, Andy Suryowinoto

Abstract

A hotel is a type of accommodation that is used as a provider of lodging, food and beverage services, as well as other services used by the general public. The hotel is managed on a commercial basis that meets the requirements stipulated in the Menparpostel's decision letter. Hotel revenue is a company activity that generates overall income which has two consequences, namely positive influence or income and profits and negative influence or expenses and losses. Hotel rooms are one of the main components produced by hotels as a determinant of the level of success of hotel operations. Forecasting hotel revenues can help entrepreneurs predict future revenues by using revenue data from the previous year. This analysis can help entrepreneurs determine strategies and policies to both increase their income and streamline existing costs. Therefore, researchers conducted a Decision Tree Algorithm analysis in predicting XYZ hotel revenue. The stages carried out in this research are data collection, initial data processing, further data processing (Forecasting), and comparative analysis. The results of this research, the DT algorithm produces an RMSE value of 45499674,430 with data split 81:19.

 

 

 

Keywords

Hotel, Revenue, Forecasting, Decision Tree

Full Text:

PDF

References

Y. P. Agustia and E. Suryani, “Pengaruh Ukuran Perusahaan, Umur Perusahaan, Leverage, Dan Profitabilitas Terhadap Manajemen Laba (Studi Pada Perusahaan Pertambangan yang Terdaftar di Bursa Efek Indonesia Periode 2014-2016),” Jurnal ASET (Akuntansi Riset), vol. 10, no. 1, pp. 71–82, Jun. 2018, Accessed: Nov. 25, 2024. [Online]. Available: https://ejournal.upi.edu/index.php/aset/article/view/12571

“Online Catalog | library@petra.” Accessed: Nov. 25, 2024. [Online]. Available: https://perpus.petra.ac.id/catalog/digital/detail?id=39775

I. P. Arnawa, “Pengaruh Tingkat Hunian Kamar dan Pendapatan Spa terhadap Laba Operasional di Nusa Dua Beach Hotel & Spa,” JURNAL BISNIS HOSPITALITI, vol. 9, no. 2, pp. 54–63, Dec. 2020, doi: 10.52352/jbh.v9i2.504.

M. Keuangan and P. Supatmin, “INOVASI FINANSIAL DALAM MENINGKATKAN EFISIENSI”, doi: 10.53067/ijebef.v3i3.

A. H. Nasrullah, “IMPLEMENTASI ALGORITMA DECISION TREE UNTUK KLASIFIKASI PRODUK LARIS,” vol. 7, no. 2, 2021, [Online]. Available: http://ejournal.fikom-unasman.ac.id

A. P. Handayani and R. Badrudin, “Evaluation of Village Fund Allocation on Indonesia,” Journal of Accounting and Investment, vol. 20, no. 3, 2019, doi: 10.18196/jai.2003129.

R. Dhany and H. Henny, “STRATEGI BISNIS UNTUK MENINGKATKAN KINERJA DAN PELUANG PERUSAHAAN (Studi Kasus di Perusahaan Motor).”

D. Ruswanti, “PENGUKURAN PERFORMA SUPPORT VECTOR MACHINE DAN NEURAL NETWOK DALAM MERAMALKAN TINGKAT CURAH HUJAN,” 2020.

R. Setiawan and A. Triayudi, “Klasifikasi Status Gizi Balita Menggunakan Naïve Bayes dan K-Nearest Neighbor Berbasis Web,” Jurnal Media Informatika Budidarma, vol. 6, no. 2, p. 777, 2022, doi: 10.30865/mib.v6i2.3566.