Comparative Performance of Material Extrusion and Vat Photopolymerization Systems for Automotive Product

Yopi Yusuf Tanoto, Nicholas Adriel Sugiarto, Ivan Christian Hernando, Willyanto Anggono

Abstract


Additive Manufacturing (AM) has emerged as a rapidly developing technology with applications ranging from product visualization and prototype fabrication to actual production. Various types of AM are available on the market, broadly categorized into industrial-grade and consumer-grade machines. This study focuses on consumer-grade printers, which are more affordable and widely accessible. Among these, the two most commonly used technologies are Material Extrusion (ME) and Vat Photopolymerization (VP). While the performance of ME printers has been widely investigated, comparative studies between ME and VP remain limited. This research provides a performance comparison of the two technologies. The findings indicate that VP printers outperform ME in terms of printing speed and energy efficiency. On the other hand, FDM printers offer advantages in material cost and dimensional accuracy in the Z direction. Furthermore, the study examines the potential of consumer-grade printers to support automotive product prototyping efficiently and practically.

Full Text:

PDF

References


S. Yilmaz, “Comprehensive analysis of 3D printed PA6 .6 and fiber‐reinforced variants: Revealing mechanical properties and adhesive wear behavior,” Polym. Compos., vol. 45, no. 2, pp. 1446–1460, Jan. 2024, doi: 10.1002/pc.27865.

M. W. Rosyadi, A. D. Prayoga, A. S. Mukti et al., “Optimization of Fused Deposition Modeling (FDM) Machine Process Parameters for Polylactic Acid (PLA) Surface Roughness Using the Taguchi Approach,” J. Mech. Eng. Sci. Innov., vol. 4, no. 1, pp. 35–44, Jul. 2024, doi: 10.31284/j.jmesi.2024.v4i1.5999.

S. Berretta, K. Evans, and O. Ghita, “Additive manufacture of PEEK cranial implants: Manufacturing considerations versus accuracy and mechanical performance,” Mater. Des., vol. 139, pp. 141–152, Feb. 2018, doi: 10.1016/j.matdes.2017.10.078.

W. S. Tan, Y. Y. Tanoto, N. Jonoadji et al., “The Effect of Cooling and Temperature in 3D Printing Process with Fused Deposition Modelling Technology on the Mechanical Properties with Polylactic Acid Recycled Material,” Int. Rev. Mech. Eng. IREME, vol. 15, no. 12, p. 615, Dec. 2021, doi: 10.15866/ireme.v15i12.21573.

M. Pérez, D. Carou, E. M. Rubio et al., “Current advances in additive manufacturing,” Procedia CIRP, vol. 88, pp. 439–444, 2020, doi: 10.1016/j.procir.2020.05.076.

Y. Y. Tanoto, J. Anggono, I. H. Siahaan et al., “The effect of orientation difference in fused deposition modeling of ABS polymer on the processing time, dimension accuracy, and strength,” presented at the INTERNATIONAL CONFERENCE ON ENGINEERING, SCIENCE AND NANOTECHNOLOGY 2016 (ICESNANO 2016), Solo, Indonesia, 2017, p. 030051. doi: 10.1063/1.4968304.

K. Wangsawijaya, Y. Y. Tanoto, D. Wahjudi et al., “A preliminary study of remanufacturing on FDM machine,” presented at the APPLIED PHYSICS OF CONDENSED MATTER (APCOM2023), Štrbské Pleso, Slovak Republic, 2024, p. 020008. doi: 10.1063/5.0181553.

H. Adibi and M. R. Hashemi, “Experimental study on tensile strength of copper microparticles filled polymer composites printed by fused deposition modelling process,” Rapid Prototyp. J., vol. 28, no. 1, pp. 21–31, Jan. 2022, doi: 10.1108/RPJ-08-2020-0199.

A. D. Prayoga, A. S. Mukti, R. D. K. Mahameru et al., “Optimization of Fused Deposition Modeling (FDM) Machine Parameters for Carbon Fiber Tensile Strength Using the Taguchi Method,” J. Mech. Eng. Sci. Innov., vol. 4, no. 1, pp. 45–56, Jul. 2024, doi: 10.31284/j.jmesi.2024.v4i1.5987.

A. Konta, M. García-Piña, and D. Serrano, “Personalised 3D Printed Medicines: Which Techniques and Polymers Are More Successful?,” Bioengineering, vol. 4, no. 4, p. 79, Sep. 2017, doi: 10.3390/bioengineering4040079.

R. Febrian, Y. Y. Tanoto, V. Filbert et al., “OPTIMASI MULTIRESPON PADA PROSES 3D PRINTING MATERIAL PLA DENGAN METODE TAGUCHI GREY,” J. Rekayasa Mesin, vol. 13, no. 2, pp. 577–588, Sep. 2022, doi: 10.21776/jrm.v13i2.1113.

Y. Y. Tanoto, V. Filbert, R. Febrian et al., “Optimasi Multirespon pada Proses 3D Printing Material ABS dengan Metode Taguchi-PCR Topsis,” TEKNIK, vol. 43, no. 2, pp. 147–157, Jul. 2022, doi: 10.14710/teknik.v43i2.43301.

D. A. Rau, M. Kim, B. Xu et al., “Vat Photopolymerization Printing of Modular Soft Stretchable Low-Cost Elastomers,” ACS Appl. Polym. Mater., vol. 7, no. 11, pp. 7566–7574, Jun. 2025, doi: 10.1021/acsapm.5c01217.

M. Pagac, K. Hajnys, Q. Ma et al., “A Review of Vat Photopolymerization Technology: Materials, Applications, Challenges, and Future Trends of 3D Printing,” Polymers, vol. 13, no. 4, p. 598, Feb. 2021, doi: 10.3390/polym13040598.

F. Zhang, L. Zhu, Z. Li et al., “The recent development of vat photopolymerization: A review,” Addit. Manuf., vol. 48, p. 102423, Dec. 2021, doi: 10.1016/j.addma.2021.102423.

D. Chekkaramkodi, L. Jacob, M. S. C et al., “Review of vat photopolymerization 3D printing of photonic devices,” Addit. Manuf., vol. 86, p. 104189, Apr. 2024, doi: 10.1016/j.addma.2024.104189.

K. Szykiedans and W. Credo, “Mechanical Properties of FDM and SLA Low-cost 3-D Prints,” Procedia Eng., vol. 136, pp. 257–262, 2016, doi: 10.1016/j.proeng.2016.01.207.

E. Mukherjee, L. Malone, E. Tackett et al., “Monitoring the Calibration of In-Office 3D Printers,” Dent. J., vol. 11, no. 1, p. 20, Jan. 2023, doi: 10.3390/dj11010020.

P. Turek, A. Bazan, P. Kubik et al., “Development of a Calibration Procedure of the Additive Masked Stereolithography Method for Improving the Accuracy of Model Manufacturing,” Appl. Sci., vol. 15, no. 13, p. 7412, Jul. 2025, doi: 10.3390/app15137412.

O. Kordyl, Z. Ztyrna, M. Wojtylko et al., “Optimization of LCD-Based 3D Printing for the Development of Clotrimazole-Coated Microneedle Systems,” Materials, vol. 18, no. 7, p. 1580, Mar. 2025, doi: 10.3390/ma18071580.

I. K. Cingesar, M.-P. Marković, and D. Vrsaljko, “Effect of post-processing conditions on polyacrylate materials used in stereolithography,” Addit. Manuf., vol. 55, p. 102813, Jul. 2022, doi: 10.1016/j.addma.2022.102813.

C. W. Elverum and T. Welo, “Leveraging prototypes to generate value in the concept-to-production process: a qualitative study of the automotive industry,” Int. J. Prod. Res., vol. 54, no. 10, pp. 3006–3018, May 2016, doi: 10.1080/00207543.2016.1152406.




DOI: https://doi.org/10.31284/j.jmesi.2025.v5i2.8201

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Published by:
Mechanical Engineering Department - Institut Teknologi Adhi Tama Surabaya

Editorial Address
Journal of Mechanical Engineering, Science, and Innovation is licensed under CC BY-NC 4.0