Hardness Analysis, Hydrogen Test and Welding Size on Seamless Steel Pipes API 5L Gr.X65 PSL2 with Post Weld Heat Treatment (PWHT)

Pradhana Kurniawan, Darto Darto, Ubbayu Annaufal

Abstract


Seamless steel pipes in oil and gas pipeline applications will provide quite high pressure, so the welding process is important in ensuring pipe safety. This study aims to analyze the hardness, hydrogen test and welding size of seamless steel pipes that undergo post weld heat treatment (PWHT) process. The pipe diameter dimension is 6 inches with API 5L Gr.X65 PSL2 type. The experimental method begins with the PWHT process by heating to a temperature of 625 ° C with a holding time of 1 hour 10 minutes then slowly cooled with a cooling rate of 154 ° C / hour. The specimens that underwent PWHT were then analyzed for hardness, hydrogen test and welding size simulation. The hardness results decreased after PWHT at all basic metal, HAZ and center of weld positions. Position 0 ° ranges from 126-174 HRB, position 120 ° produces a value of 122 - 143 HRB and position 270 ° has a value of 133-154 HRB. The decrease in hardness occurs due to the tempering process which reduces residual stress. The pressure generated in the hydrogen test does not exceed the yield strength of the API 5L Gr.X65 PSL2 pipe material, which is 65,300 psi. The maximum weld size simulation results are produced with a value of 6,448 mm and a minimum value of 1,572 mm. The maximum value is used as a reference in welding to produce a safe connection.

Full Text:

PDF

References


M. J. Kaiser and E. W. McAllister, “Pipeline Rules of Thumb Handbook (Ninth Edition),” Gulf Professional Publishing, 2023, pp. 1–60. doi: 10.1016/B978-0-12-822788-6.00008-6.

M. Mahmoodian, “Reliability and Maintainability of In-Service Pipelines,” Gulf Professional Publishing, 2018, pp. 1–48. doi: 10.1016/B978-0-12-813578-5.00001-9.

S. Karamanos, “Structural Mechanics and Design of Metal Pipes,” Elsevier, 2023, pp. 43–58. doi: 10.1016/B978-0-323-88663-5.00007-4.

G. Méndez, S. Capula-Colindres, J. Velázquez et al., “Mechanical Characterization of Resistance-Welded and Seamless API 5L X52 Pipes: A Comparative Study,” Coatings, vol. 14, p. 343, Mar. 2024, doi: 10.3390/coatings14030343.

T. Yu, F. Zhang, L. Zhao et al., “Crack Failure Analysis of Stainless Steel Seamless Pipe,” in Advances in Machinery, Materials Science and Engineering Application IX, IOS Press, 2023, pp. 98–103. doi: 10.3233/ATDE230446.

A. Andoko, P. Kurniawan, S. Suprayitno et al., “Residual Stress and Texture Analysis of Leaf Spring Failure,” Int. J. Technol., vol. 15, no. 4, p. 1162, Jul. 2024, doi: 10.14716/ijtech.v15i4.5571.

Ž. Božić, S. Schmauder, and H. Wolf, “The effect of residual stresses on fatigue crack propagation in welded stiffened panels,” Eng. Fail. Anal., vol. 84, pp. 346–357, Feb. 2018, doi: 10.1016/j.engfailanal.2017.09.001.

P. Kurniawan and Andoko, “Simulation of stress intensity factor and fatigue life on leaf spring failure,” AIP Conf. Proc., vol. 2991, no. 1, p. 020015, Jun. 2024, doi: 10.1063/5.0198716.

P. Kurniawan, Darto, and Jumiadi, “Simulation of stress and hysteresis curves on vehicle drive gear transfer failure with static structural and transient approaches,” AIP Conf. Proc., vol. 2991, no. 1, p. 020025, Jun. 2024, doi: 10.1063/5.0198655.

F. W. Brust and D. S. Kim, “Processes and Mechanisms of Welding Residual Stress and Distortion,” Z. Feng, Ed., in Woodhead Publishing Series in Welding and Other Joining Technologies. , Woodhead Publishing, 2005, pp. 264–294. doi: 10.1533/9781845690939.2.264.

H. Diantoro, J. Jumiadi, and I. Widyastuti, “Analysis of The Effect of Post Weld Heat Treatment (PWHT) on The Hardness and Corrosion Rate of SMAW Welded Joints on AISI 304 Plates,” TRANSMISI, vol. 20, no. 1, pp. 19–26, Mar. 2024, doi: 10.26905/jtmt.v20i1.12716.

M. Stewart and O. T. Lewis, “Pressure Vessels Field Manual,” M. Stewart and O. T. Lewis, Eds., Gulf Professional Publishing, 2013, pp. 1–48. doi: 10.1016/B978-0-12-397015-2.00001-9.

A. Baisukhan, N. Naksuk, P. Insua et al., “Influence of Post-Weld Heat Treatment on Mechanical Properties and Microstructure of Plasma Arc-Welded 316 Stainless Steel,” Materials, vol. 17, no. 15, Art. no. 15, Jan. 2024, doi: 10.3390/ma17153768.

P. Moore and G. Booth, “The Welding Engineers Guide to Fracture and Fatigue,” in The Welding Engineers Guide to Fracture and Fatigue, P. Moore and G. Booth, Eds., Oxford: Woodhead Publishing, 2015, pp. 185–195. doi: 10.1533/9781782423911.2.185.

I. Kusminah, D. Anggara, D. Wardani et al., “Analysis of the Effect of PWHT on the Corrosion Test of API 5L X65 Material in Submerged Arc Welding,” J. Mech. Eng. Sci. Innov., vol. 4, pp. 122–132, Oct. 2024, doi: 10.31284/j.jmesi.2024.v4i2.6556.

K. Ravikiran, L. Li, G. Lehnhoff et al., “Crystallographic texture before and after post weld heat treatment of high-frequency electric resistance welded API X65 linepipe,” Mater. Sci. Technol., p. 02670836241309815, Dec. 2024, doi: 10.1177/02670836241309815.

X. Wang, D. Wang, L. Dai et al., “Effect of Post-Weld Heat Treatment on Microstructure and Fracture Toughness of X80 Pipeline Steel Welded Joint,” Materials, vol. 15, no. 19, Art. no. 19, Jan. 2022, doi: 10.3390/ma15196646.

H. Alipooramirabad, A. Paradowska, S. Nafisi et al., “Post-Weld Heat Treatment of API 5L X70 High Strength Low Alloy Steel Welds,” Materials, vol. 13, no. 24, p. 5801, Dec. 2020, doi: 10.3390/ma13245801.

M. Abd Majid and M. Sarwar, “Effect of Post Weld Heat Treatment on Weld Hardness Quality of P91 Welded Pipes,” Appl. Mech. Mater., vol. 799–800, pp. 377–381, Oct. 2015, doi: 10.4028/www.scientific.net/AMM.799-800.377.

R. K. Aninda, S. M. Karobi, R. Shariar et al., “Effect of post-weld heat treatment on mechanical properties and microstructure in electric arc welded mild steel joints,” J. Eng. Res., vol. 12, no. 2, pp. 210–215, Jun. 2024, doi: 10.1016/j.jer.2023.10.012.

L. Tuz, Ł. Sokołowski, and S. Stano, “Effect of Post-Weld Heat Treatment on Microstructure and Hardness of Laser Beam Welded 17-4 PH Stainless Steel,” Materials, vol. 16, no. 4, p. 1334, Feb. 2023, doi: 10.3390/ma16041334.

F. Liu, H. Zhao, and Z. Xu, “Effect of post-weld heat treatment on the microstructure and mechanical properties of SSFSW HVDC AlSiMgMnCu alloy,” J. Mater. Res. Technol., vol. 21, pp. 3686–3702, Nov. 2022, doi: 10.1016/j.jmrt.2022.11.012.

G. dwi haryadi, R. Ismail, and M. Haira, “Pengaruh Post Weld Heat Treatment (Pwht) dengan Pemanas Induksi Terhadap Sifat Mekanik dan Struktur Mikro Sambungan Las Shield Metal Arc Welding (Smaw) pada Pipa API 5l X52,” ROTASI, vol. 19, p. 117, Sep. 2017, doi: 10.14710/rotasi.19.3.117-124.

“API 5L Pipe Specification - PSL1 & PSL2,” UNIASEN. Accessed: Jul. 02, 2025. [Online]. Available: https://uniasen.com/standards/api-5l/

A. S. Tazedakis, N. Voudouris, E. Dourdounis et al., “Qualification of High-Strength Linepipes for Hydrogen Transportation based on ASME B31.12 Code,” EITEP Institute, Mar. 2021. Accessed: Jul. 02, 2025. [Online]. Available: https://www.pipeline-journal.net/articles/qualification-high-strength-linepipes-hydrogen-transportation-based-asme-b3112-code

L. Briottet, I. Moro, and P. Lemoine, “Quantifying the hydrogen embrittlement of pipeline steels for safety considerations,” Int. J. Hydrog. Energy, vol. 37, pp. 17616–17623, Nov. 2012, doi: 10.1016/j.ijhydene.2012.05.143.

C. Huang, C. Cui, R. Niu, F. Lu, C.-Y. Wu, X. Zhu, H. Lu, Y. Zhang, P.-Y. Liu, B. Dong, Y.-H. Sun, H. Wang, W. Li, H.-W. Yen, A. Guo, J. M. Cairney, E. Martínez-Pañeda, and E. Y.-S. Chen, “Strong hydrogen trapping by tangled dislocations in cold-drawn pearlitic steels,” Acta Mater., vol. 296, p. 121231, Sep. 2025, doi: 10.1016/j.actamat.2025.121231.

H. Yu, A. Díaz, X. Lu, B. Sun, Y. Ding, M. Koyama, J. He, X. Zhou, A. Oudriss, X. Feaugas, and Z. Zhang, “Hydrogen Embrittlement as a Conspicuous Material Challenge—Comprehensive Review and Future Directions,” Chem. Rev., vol. 124, no. 10, pp. 6271–6392, May 2024, doi: 10.1021/acs.chemrev.3c00624.

S. Wang, R. Shi, J. Wu, C. Yang, and H. Liu, “Investigation on Optimization of Finite Element Model for Stress Analysis of 12Cr1MoV Main Steam Pipeline Elbow,” Crystals, vol. 15, no. 3, Art. no. 3, Mar. 2025, doi: 10.3390/cryst15030207.

S. D. Vijaya Kumar, S. Karuppanan, V. Perumal, and M. Ovinis, “Failure pressure prediction of high-strength steel pipe bend considering pipe and corrosion geometry,” Discov. Appl. Sci., vol. 6, no. 4, p. 165, Mar. 2024, doi: 10.1007/s42452-024-05812-6.

S. S and R. Venkatasamy, “Stress Analysis of Oval Pipe Bend with Attached Pipe using Finite Element Analysis,” Asian J. Res. Soc. Sci. Humanit., vol. 6, p. 1868, Jan. 2016, doi: 10.5958/2249-7315.2016.01135.7.




DOI: https://doi.org/10.31284/j.jmesi.2025.v5i2.7968

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Published by:
Mechanical Engineering Department - Institut Teknologi Adhi Tama Surabaya

Editorial Address
Journal of Mechanical Engineering, Science, and Innovation is licensed under CC BY-NC 4.0