Komparasi Algoritma Support Vector Machine Dengan Naïve Bayes Untuk Analisis Kelayakan Pemberian Kredit Usaha Mikro

Aniq Astofa

Abstract

Credit has a high risk of credit congestion, this is due to the accidental factor due to the disaster experienced by the debtor so that the credit provided does not increase the income of the debtor, in addition to the existence of bad faith of the debtor by not fulfilling the obligation as it should, the data technique mining using Particle Swarm Optimization-based vector-based support method with Naive bayes. Support Vector Machine method has an accuracy of 50.70%. The second experiment conducted using Particle Swarm Optimization's Support Vector Machine method has an accuracy value of 85.92% and Compared with al-goritma or naive bayes method the accuracy value of 91.16% .with Rapidminer software

Full Text:

download

References

Rima Ayu Anggraini, Sri Mangesti Rahayu, Achmad Husaini , 2015.Analisa Aspek Kelayakan Pemberian Kredit Usaha Mikro Dalam Upaya Mengatasi Terjadinya Kredit Bermasalah, Fakultas Ilmu Administrasi Universitas Brawijaya, Malang.

Astuti ,puji , 2016. “ Komparasi Pen-erapan Algoritma C45, KNN Dan Neural Network Dalam Proses Ke- layakan Penrimaan Kredit Kendaraan Bermotor ” Universitas Indraprasta PGRI.

Jatmika, S.Si, M.Kom. 2015. Sistem Pendukung Pengambilan Keputusan Menggunakan Metode Naive Bayes (Studi Kasus Kredit Sepeda Motor). Teknik Informatika, Fakultas Sains dan Komputer, Universitas Kristen: jogyakarta

Kurniawan, Achmad Wahid. 2015.Klasifikasi Kelayakan Kredit Dengan Menggunakan Metode Naive Bayes Seminar Nasional Teknologi Informasi dan Komunikasi Terapan (SEMANTIK) 2015 Universitas Dian Nuswantoro:semarang

Kurniawan, Defri dan Supriyanto, Catur , 2013. “ Optimasi Algoritma Support Vector Machine (SVM) Menggunakan AdaBoost Untuk Penilaian Risiko Kredit “ Jurnal Teknologi Informasi, Volume 9 Nomor 1, April 2013, ISSN 1414- 9999

Refbacks

  • There are currently no refbacks.