Uji Coba Produksi Biofuel dari RBD Stearin dalam Reaktor Fixed Bed dengan Metode Cracking

Agus Budianto, Sumari Sumari, Wahyu Setyo Pambudi, Novi Andriani, A. Alif Mardianto

Abstract

Stearin merupakan satu produk yang dihasilkan dari pengolahan minyak sawit. Stearin biasanya dijadikan minyak goreng padat, akan tetapikurang diminati msyarakat. Stearin dapat diproses menjadi biofuel melalui proses perengkahan katalitik dengan katalis Zink HZSM-5/ ? alumina. Penelitian ini bertujuan untuk mempelajari pengaruh temperatur dan katalis Zink HZSM-5/ ? alumina terhadap selektivitas dan yield produk biofuel yang dihasilkan. Reaksi dilakukan pada temperatur 350, 375, 400, 425, dan 450 oC. Katalis yang digunakan dengan komposisi massa Zink HZSM-5/ ? alumina (1:1) dan (1:2). Reaksi Perengkahan katalitik stearin dilakukan dalam sebuah reaktor fixed bed. Campuran produk dalam bentuk uap dikondensasi menghasilkan produk campuran liquid dan padat. Campuran ini dipisahkan. Produk liquid dianalisa komposisinya menggunakan GC-MS. Hasil penelitian menujukkan bahwa selektivitas tertinggi adalah biokerosen 75,94 % pada suhu reaksi 425 oC menggunakan katalis 1:1. Yield produk tertinggi sebesar 26,40% pada suhu 450 oC menggunakan katalis Zink HZSM-5/ ? alumina 1:1.

Keywords

Biofuel, CPO,Fixed Bed, Reaktor, Perengkahan katalitik, Stearin

Full Text:

PDF

References

I. G. A. A. Parahita, Y. W. Mirzayanti, I. Gunardi, A. Roesyadi, and D. H. Prajitno, “Production of Biofuel via Catalytic Hydrocracking of Kapuk (Ceiba pentandra) Seed Oil with NiMo/HZSM-5 Catalyst,” MATEC Web Conf., vol. 156, p. 06001, 2018.

A. Budianto, D. H. Prajitno, A. Roesyadi, and K. Budhikarjono, “Hzsm-5 catalyst for cracking palm oil to biodiesel: A comparative study with and without pt and pd impregnation,” Sci. Study Res. Chem. Chem. Eng. Biotechnol. Food Ind., vol. 15, no. 1, pp. 81–90, 2014.

Y. W. Mirzayanti, F. Kurniawansyah, D. H. Prajitno, and A. Roesyadi, “Zn-Mo/HZSM-5 catalyst for gasoil range hydrocarbon production by catalytic hydrocracking of ceiba pentandra oil,” Bull. Chem. React. Eng. Catal., vol. 13, no. 1, pp. 136–143, 2018.

Y. Putrasari, A. Praptijanto, W. B. Santoso, and O. Lim, “Resources, policy, and research activities of biofuel in Indonesia: A review,” Energy Reports, vol. 2, pp. 237–245, 2016.

A. Budianto, D. H. Prajitno, and K. Budhikarjono, “Biofuel Production From Candlenut Oil Using Catalytic Cracking Process With Zn / Hzsm-5 Catalyst,” ARPN J. Eng. Appl. Sci., vol. 9, no. 11, pp. 2121–2124, 2014.

A. Budianto, W. S. Pambudi, S. Sumari, and A. Yulianto, “PID control design for biofuel furnace using arduino,” Telkomnika (Telecommunication Comput. Electron. Control., vol. 16, no. 6, 2018.

N. P. Asri et al., “Transesterification of Vegetables Oil Using Suband Supercritical Methanol,” Reaktor, vol. 14, no. 2, p. 123, 2012.

A. Roesyadi, D. Hariprajitno, N. Nurjannah, and S. D. Savitri, “HZSM-5 catalyst for cracking palm oil to gasoline: A comparative study with and without impregnation,” Bull. Chem. React. Eng. Catal., vol. 7, no. 3, pp. 185–190, 2013.

M. A. Tadda et al., “A review on activated carbon: process, application and prospects,” J. Adv. Civ. Eng. Pract. Res., vol. 2, no. 1, pp. 7–13, 2016.

M. Chinnamma et al., “Production of coconut methyl ester (CME) and glycerol from coconut (Cocos nucifera) oil and the functional feasibility of CME as biofuel in diesel engine,” Fuel, vol. 140, pp. 4–9, 2015.

A. Bouaid, H. Acherki, A. García, M. Martinez, and J. Aracil, “Enzymatic butanolysis of coconut oil. Biorefinery approach,” Fuel, vol. 209, pp. 141–149, 2017.

V. Vara Prasad, “Performance of 4 Stroke Diesel Engine Using Coconut Oil As Biofuel Material,” Mater. Today Proc., vol. 4, no. 4, pp. 5312–5319, 2017.

A. Budianto, D. H. Prajitno, and K. Budhikarjono, “Biofuel production from candlenut oil using catalytic cracking process with Zn/HZSM-5 catalyst,” ARPN J. Eng. Appl. Sci., vol. 9, no. 11, pp. 2121–2124, 2014.

B. Agus, S. Sumari, P. Wahyu Setyo, and Wahyudi, “Production of Various Chemicals from Nyamplung Oil with Catalytic Cracking Process,” Indian J. Sci. Technol., vol. 11, no. 37, pp. 1–7, 2018.

A. Budianto, S. Sumari, and K. Udyani, “Biofuel production from nyamplung oil using catalytic cracking process with Zn-HZSM-5/? alumina catalyst,” ARPN J. Eng. Appl. Sci., vol. 10, no. 22, pp. 10317–10323, 2015.

L. Marlinda, “Rekayasa Katalis Double Promotor Berbasis Hierarchical H-ZSM-5 untuk Memproduksi Biofuel dari Minyak Nabati,” p. 152, 2017.

A. Santoso, Sumari, D. Sukarianingsih, and R. M. Sari, “Optimization of Synthesis of Biodiesel from Jatropha curcas L. with Heterogeneous Catalyst of CaO and MgO by Transesterification Reaction Using Microwave,” J. Phys. Conf. Ser., vol. 1093, no. 1, 2018.

Khairil et al., “ The potential biodiesel production from Cerbera odollam oil (Bintaro) in Aceh ,” MATEC Web Conf., vol. 159, p. 01034, 2018.

D. Y. C. Leung, X. Wu, and M. K. H. Leung, “A review on biodiesel production using catalyzed transesterification,” Appl. Energy, vol. 87, no. 4, pp. 1083–1095, 2010.

M. S. Gad, R. El-Araby, K. A. Abed, N. N. El-Ibiari, A. K. El Morsi, and G. I. El Diwani, “Performance and emissions characteristics of C.I. engine fueled with palm oil/palm oil methyl ester blended with diesel fuel,” Egypt. J. Pet., vol. 27, no. 2, pp. 215–219, 2018.

P. Collet, D. Spinelli, L. Lardon, A. Hélias, J. P. Steyer, and O. Bernard, Life-Cycle Assessment of Microalgal-Based Biofuels, Second Edi. Elsevier B.V., 2013.

B. Narowska, M. Ku?a?y?ski, M. ?ukaszewicz, and E. Burchacka, “Use of activated carbons as catalyst supports for biodiesel production,” Renew. Energy, vol. 135, pp. 176–185, 2019.

R. Rasyid, A. Prihartantyo, M. Mahfud, and A. Roesyadi, “Hydrocracking of Calophyllum inophyllum oil with non-sulfide CoMo catalysts,” Bull. Chem. React. Eng. Catal., vol. 10, no. 1, pp. 61–69, 2015.

N. Bin Chang, G. Parvathinathan, and J. B. Breeden, “Combining GIS with fuzzy multicriteria decision-making for landfill siting in a fast-growing urban region,” J. Environ. Manage., vol. 87, no. 1, pp. 139–153, 2008.

B. Behera, A. Acharya, I. A. Gargey, N. Aly, and B. P, “Bioprocess engineering principles of microalgal cultivation for sustainable biofuel production,” Bioresour. Technol. Reports, vol. 5, pp. 297–316, 2019.

Y. Y. Choi, A. K. Patel, M. E. Hong, W. S. Chang, and S. J. Sim, “Microalgae Bioenergy with Carbon Capture and Storage (BECCS): An emerging sustainable bioprocess for reduced CO2 emission and biofuel production,” Bioresour. Technol. Reports, vol. 7, no. March, p. 100270, 2019.

S. N. Hassan, Y. M. Sani, A. R. Abdul Aziz, N. M. N. Sulaiman, and W. M. A. W. Daud, “Biogasoline: An out-of-the-box solution to the food-for-fuel and land-use competitions,” Energy Convers. Manag., vol. 89, pp. 349–367, 2015.

V. Han-U-Domlarpyos, P. Kuchonthara, P. Reubroycharoen, and N. Hinchiranan, “Quality improvement of oil palm shell-derived pyrolysis oil via catalytic deoxygenation over NiMoS/?-Al2O3,” Fuel, vol. 143, pp. 512–518, 2015.

N. Sirajudin, K. Jusoff, S. Yani, L. Ifa, and A. Roesyadi, “Biofuel production from catalytic cracking of palm oil,” World Appl. Sci. J., vol. 26, no. 26, pp. 67–71, 2013.

E. Buzetzki, K. Sidorová, Z. Cvengrošová, A. Kaszonyi, and J. Cvengroš, “The influence of zeolite catalysts on the products of rapeseed oil cracking,” Fuel Process. Technol., vol. 92, no. 8, pp. 1623–1631, 2011.

M. Iqbal, V. Purnomo, and D. H. Prajitno, “Rekayasa Katalis Ni/Zn-HZSM-5 untuk Memproduksi Biofuel dari Minyak Bintaro,” J. Tek. Pomits, vol. Vol 3, no. 2, pp. 153–157, 2014.

Refbacks

  • There are currently no refbacks.