Pengembangan Financial Documentation System Berbasis Artificial Intelligence Untuk Meningkatkan Self Service Dan Layanan Prima Bidang Keuangan
Abstract
Penelitian ini bertujuan untuk mengembangkan Financial Documentation System Berbasis Artificial Intelligence untuk meningkatkan efisiensi dan akurasi dalam pengelolaan dokumen keuangan. Sistem yang diusulkan dirancang untuk mempercepat proses pelaporan, meminimalkan kesalahan manusia, dan meningkatkan layanan pelanggan di sektor keuangan. Sistem ini akan mengotomatisasi pembuatan dan pengelolaan dokumen keuangan, mengurangi beban kerja manual, dan memberikan layanan yang lebih cepat dan responsif kepada pengguna. Penelitian ini menggunakan pendekatan prototipe, yang melibatkan tahapan komunikasi, perencanaan cepat, desain cepat, konstruksi prototipe, penerapan, dan umpan balik. Hasil yang diharapkan dari sistem ini termasuk peningkatan efisiensi operasional dan kualitas layanan, memungkinkan pengguna untuk mengakses layanan mandiri dengan cepat dan akurat, dan meningkatkan kepuasan pelanggan melalui pemberian layanan yang unggul dan responsif.
Keywords
References
E. Considine and K. Cormican, “The rise of the prosumer: an analysis of self-service technology adoption in a corporate context,” Int. J. Inf. Syst. Proj. Manag., vol. 5, no. 2, pp. 25–39, 2017, doi: 10.12821/IJISPM050202.
M. Blut, C. Wang, and K. Schoefer, “Factors Influencing the Acceptance of Self-Service Technologies,” J. Serv. Res., vol. 19, no. 4, pp. 396–416, Nov. 2016, doi: 10.1177/1094670516662352.
L. Cao, “AI in Finance: Challenges, Techniques and Opportunities,” 2021, doi: 10.1145/nnnnnnn.nnnnnnn.
Y. Ren, W. Hu, Z. Wang, X. Zhang, Y. Wang, and X. Wang, “A hybrid deep generative neural model for financial report generation,” Knowledge-Based Syst., vol. 227, p. 107093, Sep. 2021, doi: 10.1016/J.KNOSYS.2021.107093.
M. Mori and M. Mori, “AI-Powered Virtual Assistants in the Realms of Banking and Financial Services,” Virtual Assist., Jan. 2021, doi: 10.5772/INTECHOPEN.95813.
L. Cui, Y. Xu, T. Lv, and F. Wei, “DOCUMENT AI: BENCHMARKS, MODELS AND APPLI-CATIONS”, Accessed: Oct. 05, 2024. [Online]. Available: https://cloud.google.com/document-ai
Y. A. Danilov, “Financial sector efficiency: Present concepts and the estimation problem,” J. New Econ. Assoc., vol. 57, no. 5, pp. 72–92, 2022, doi: 10.31737/2221-2264-2022-57-5-5.
A. Parasuraman, V. Zeithaml, and L. Berry, “SERVQUAL: A multiple-item scale for measuring consumer perceptions of service quality.,” J. Retail., vol. 64, pp. 12–40, Accessed: Feb. 19, 2024. [Online]. Available: https://doi.org/
Y. Gao and H. Liu, “Artificial intelligence-enabled personalization in interactive marketing: a customer journey perspective,” J. Res. Interact. Mark., vol. 17, no. 5, pp. 663–680, Oct. 2023, doi: 10.1108/JRIM-01-2022-0023.
A. Kokkinou and D. A. Cranage, “Using self-service technology to reduce customer waiting times,” Int. J. Hosp. Manag., vol. 33, no. 1, pp. 435–445, Jun. 2013, doi: 10.1016/J.IJHM.2012.11.003.
A. Caines et al., “On the application of Large Language Models for language teaching and assessment technology,” CEUR Workshop Proc., vol. 3487, pp. 173–197, Jul. 2023, Accessed: Dec. 21, 2023. [Online]. Available: https://arxiv.org/abs/2307.08393v1
B. Agüera Y Arcas, “Do Large Language Models Understand Us?,” Daedalus, vol. 151, no. 2, pp. 183–197, May 2022, doi: 10.1162/DAED_A_01909.
Z. Ma, Z. Dou, Y. Zhu, H. Zhong, and J. R. Wen, “One Chatbot per Person: Creating Personalized Chatbots based on Implicit User Profiles,” SIGIR 2021 - Proc. 44th Int. ACM SIGIR Conf. Res. Dev. Inf. Retr., pp. 555–564, Jul. 2021, doi: 10.1145/3404835.3462828.
S. Sarsa, P. Denny, A. Hellas, and J. Leinonen, “Automatic Generation of Programming Exercises and Code Explanations Using Large Language Models,” ICER 2022 - Proc. 2022 ACM Conf. Int. Comput. Educ. Res., vol. 1, pp. 27–43, Aug. 2022, doi: 10.1145/3501385.3543957.
B. O. Antwi, B. O. Adelakun, and A. O. Eziefule, “Transforming Financial Reporting with AI: Enhancing Accuracy and Timeliness,” Int. J. Adv. Econ., vol. 6, no. 6, pp. 205–223, Jun. 2024, doi: 10.51594/IJAE.V6I6.1229.
S. Abbas et al., “Comprehensive Review on Natural Language Generation for Automated Report Writing in Finance,” Br. J. Comput. Netw. Inf. Technol., vol. 7, no. 3, pp. 85–93, Aug. 2024, doi: 10.52589/BJCNIT-ELBOL7TY.
L. Cao, G. Yuan, T. Leung, and W. Zhang, “Special Issue on AI and FinTech: The Challenge Ahead,” IEEE Intell. Syst., vol. 35, no. 2, pp. 3–6, Mar. 2020, doi: 10.1109/MIS.2020.2983494.
R. S. Pressman and B. R. Maxim, Software engineering : a practitioners approach, 9th ed. McGraw-Hill Education, 2020. Accessed: Oct. 15, 2023. [Online]. Available: https://books.google.com/books/about/Software_Engineering.html?hl=id&id=taIKxAEACAAJ
Refbacks
- There are currently no refbacks.