Optimasi Parameter Operasional Mini Pembangkit Listrik Tenaga Angin Berbasis Machine Learning untuk Meningkatkan Output Daya

Parman Parman, Fais Hamzah, Rahmat Basya Shahrys Tsany, Thomas Brian, Dicki Nizar Zulfika

Abstract


The utilization of renewable energy is experiencing significant growth, with wind turbines emerging as a key solution for generating environmentally friendly electricity. However, the efficiency of wind turbines is highly dependent on their operational parameters, such as wind speed, blade size, angular velocity, and torque. This research aims to optimize the operational parameters of small-scale wind turbines using an XGBoost-based Machine Learning model and an L-BFGS-B algorithm-based optimization method. A simulation dataset was generated based on the physical equations of wind turbine power and a MATLAB Simulink model, incorporating added noise to approximate real-world conditions. The XGBoost model was trained to predict the turbine's output power based on its operational parameters. Subsequently, an optimization method was employed to identify the parameter combination that yields maximum power. The experimental results demonstrate that the model exhibits strong performance, characterized by a low Mean Squared Error (MSE) and a high R-squared score. The optimization process successfully achieved a significant increase in power output compared to the initial configuration. Through this approach, wind turbine systems can operate more efficiently and generate optimal electrical power. This study contributes to the advancement of artificial intelligence-based optimization strategies for renewable energy systems.


Keywords


Wind turbine; optimization; Machine Learning; XGBoost; L-BFGS-B

Full Text:

PDF

References


IEA, “Wind,” IEA. Accessed: Mar. 25, 2025. [Online]. Available: https://www.iea.org/energy-system/renewables/wind

Energypedia Team, “Small-Scale Wind,” EnergyPedia. Accessed: Mar. 25, 2025. [Online]. Available: https://energypedia.info/wiki/Small-Scale_Wind

A. T. Wardhana, A. Taqwa, and T. Dewi, “Design of Mini Horizontal Wind Turbine for Low Wind Speed Area,” J Phys Conf Ser, vol. 1167, p. 012022, Feb. 2019, doi: 10.1088/1742-6596/1167/1/012022.

M. F. Hairani and S. A. Jumaat, “Development of Double Mini Windmill with Smart Monitoring System,” Journal of Electronic Voltage and Application, vol. 3, no. 2, Dec. 2022, doi: 10.30880/jeva.2022.03.02.006.

C. R. Harahap, “Aplikasi Perancangan Generator Sinkron Magnet Permanen Menggunakan Matlab Simulink,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 12, no. 1, Jan. 2024, doi: 10.23960/jitet.v12i1.3916.

S. Nur Fitri, F. Azis, H. A. N. Muhammad, R. Rusli, and R. N. Hidayat, “Rancang Bangun Turbin Angin Sumbu Horizontal Dengan Generator BLDC Sebagai Sistem Penerangan,” Joule (Journal of Electrical Engineering)., vol. 3, no. 2, pp. 174–179, Aug. 2022, doi: 10.61141/joule.v3i2.322.

A. Darussalam, A. Sunardi, and R. Ariyansah, “Perancangan Stabilizer Pembangkit Listrik Tenaga Angin Untuk Pengisian Baterai Mobil,” Journal Teknik Mesin, Elektro, Informatika, Kelautan dan Sains, vol. 3, no. 1, pp. 1–9, Jun. 2023, doi: 10.30598/metiks.2023.3.1.1-9.

S. A. Hussien, M. A. Deab, and N. S. Hosny, “Improving the delivered power quality from WECS to the grid based on PMSG control model,” International Journal of Electrical and Computer Engineering (IJECE), vol. 10, no. 6, p. 6349, Dec. 2020, doi: 10.11591/ijece.v10i6.pp6349-6360.

Kusnadi and Ismail, “Eksperimental Turbin Zephyr dengan Pengaruh Sudu Rotor dan Sudu Statis,” Rotasi, vol. 25, pp. 33–39, Jul. 2023, Accessed: Feb. 16, 2025. [Online]. Available: https://ejournal.undip.ac.id/index.php/rotasi/article/download/58171/24528

H. Slah, D. Mehdi, and S. Lassaad, “Advanced Control of a PMSG Wind Turbine,” International Journal of Modern Nonlinear Theory and Application, vol. 05, no. 01, pp. 1–10, 2016, doi: 10.4236/ijmnta.2016.51001.




DOI: https://doi.org/10.31284/p.snestik.2025.7578

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Parman Parman, Fais Hamzah, Rahmat Basya Shahrys Tsany, Thomas Brian, Dicki Nizar Zulfika

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.