COMPARATIVE ANALYSIS OF LSTM, GRU AND META PROPHET STOCK FORECASTING METHODS WITH VAR-ES RISK EVALUATION
Abstract
Keywords
References
Petram, L. O. (2011). The World's First Stock Exchange: How the Amsterdam Market for VOC Shares Became a Modern Securities Market, 1602–1700 [Doctoral dissertation, University of Amsterdam]. University of Amsterdam Repository. https://pure.uva.nl/ws/files/1427391/85961_thesis.pdf
Pandya, J. B., & Jaliya, U. K. (2022). An empirical study on the various stock market prediction methods. Jurnal Ilmiah Teknologi Sistem Informasi, 8(1), 58–80. https://doi.org/10.26594/register.v8i1.2533
Ridwan, M., Sadik, K., & Afendi, F. M. (2023). Comparison of ARIMA and GRU models for high-frequency time series forecasting. Scientific Journal of Informatics, 10(3). https://doi.org/10.15294/sji.v10i3.45965
Haryono, A. T., Sarno, R., & Sungkono, K. R. (2024). Stock price forecasting in Indonesia stock exchange using deep learning: A comparative study. International Journal of Electrical and Computer Engineering (IJECE), 14(1), 861–869. https://doi.org/10.11591/ijece.v14i1.pp861-869
Gülmez, B. (2023). Stock price prediction with optimized deep LSTM network with artificial rabbits optimization algorithm. Expert Systems with Applications, 2023. https://doi.org/10.1016/j.eswa.2023.120346
Chiu, K.-C. (2024). A long short-term memory model for forecasting housing prices in Taiwan in the post-epidemic era through big data analytics. Asia Pacific Management Review, 29(4), 273–283. https://doi.org/10.1016/j.apmrv.2023.08.002
Fang, Z., Ma, X., Pan, H., Yang, G., & Arce, G. R. (2024). Movement forecasting of financial time series based on adaptive LSTM-BN network. International Journal of Development and Economic Sustainability, 12(3),36-45. https://doi.org/10.37745/ijdes.13/vol12n33645
Furizal, F., Ritonga, A., Ma’arif, A., & Suwarno, I. (2024). Stock price forecasting with multivariate time series long short-term memory: A deep learning approach. Journal of Robotics and Control (JRC), 5(5). https://doi.org/10.18196/jrc.v5i5.22460
Yurtsever, M. (2021). Gold price forecasting using LSTM, Bi-LSTM and GRU. European Journal of Science and Technology. https://doi.org/10.31590/ejosat.959405
Dip Das, J., Thulasiram, R. K., Henry, C., & Thavaneswaran, A. (2024). Encoder–Decoder Based LSTM and GRU Architectures for Stocks and Cryptocurrency Prediction. Journal of Risk and Financial Management, 17(200), 1–23. https://doi.org/10.3390/jrfm17050200
Chen, C., Chen, C., & Xing, W. (2023). Research on improved GRU-based stock price prediction method. Applied Sciences, 13. https://doi.org/10.3390/app13158813
Shaju, B., & Narayan, V. (2023). Prediction model for stock trading using combined long short term memory and neural prophet with regressors. International Journal of Intelligent Engineering and Systems, 16(6). https://doi.org/10.22266/ijies2023.1231.79
Van der Lecq, M., & van Vuuren, G. (2024). Estimating value at risk and expected shortfall: A Kalman filter approach. International Journal of Economics and Financial Issues, 14(1). https://doi.org/10.32479/ijefi.15184
Wang, J., Li, X., Zhang, Y., & Chen, L. (2024). Forecasting VaR and ES using deep quantile regression, GANs-based scenario generation, and heterogeneous market hypothesis. Financial Innovation, 10. https://doi.org/10.1186/s40854-023-00564-5
DOI: https://doi.org/10.31284/p.snestik.2025.7259
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Anggito Karta Wijaya, Priza Pandunata, Muhamad Arief Hidayat

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.