Perbandingan Aplikasi Rotor Tunggal dan Ganda terhadap Performa Turbin Air Tipe Propeller pada Saluran air Debit Rendah

Miftahul Ulum, Michael Azzura Akbar, M Arif, Saif Muizzadin Wadaullah

Abstract

The propeller turbine is a water turbine that is suitable for use at low heads such as irrigation canals and rivers. Hydrokinetic energy development is the most feasible option in Indonesia. However, currently the development of hydrokinetic energy in Indonesia is still very low. The propeller turbine is a water turbine which is suitable for use at low heads. This turbine is classified as a microhyro and has a head between 1-5 m. This study was conducted to compare the effect of using a double rotor on a propeller turbine. Changes in turbine performance were reviewed through the rotational speed of the rotor, torque, mechanical power and turbine electrical voltage. This research was conducted experimentally in a closed-loop test section. A pump drives fluid flowing in the closed-loop test section at flow rates of 0.05, 0.1 and 0.15 liter/s. the use of a double propeller turbine results in an increase in turbine performance above 5%. This is because turbines with double rotors have a large cross-sectional area compared to single-rotor turbines. Thus the energy contained in the fluid can be transmitted optimally to drive the turbine surface with a double rotor.

Keyword: Turbin Propeller, Double rotor, microhydro

References

Y. C. Lin, V. E. Balas, J. F. Yang, and Y. H. Chang, “Adaptive Takagi–Sugeno Fuzzy Model Predictive Control for Permanent Magnet Synchronous Generator-Based Hydrokinetic Turbine Systems,” Energies 2020, Vol. 13, Page 5296, vol. 13, no. 20, p. 5296, Oct. 2020, doi: 10.3390/EN13205296.

J. P. C. Bento, N. Szczygiel, and V. Moutinho, “Fossil fuel power generation and economic growth in Poland,” http://dx.doi.org/10.1080/15567249.2017.1324536, vol. 12, no. 10, pp. 930–935, Oct. 2017, doi: 10.1080/15567249.2017.1324536.

H. A. D. Hdom, “Examining carbon dioxide emissions, fossil & Renewable electricity generation and economic growth: Evidence from a panel of South American countries,” Renew. Energy, vol. 139, pp. 186–197, Aug. 2019, doi: 10.1016/J.RENENE.2019.02.062.

I. Samora, V. Hasmatuchi, C. Münch-Alligné, M. J. Franca, A. J. Schleiss, and H. M. Ramos, “Experimental characterization of a five blade tubular propeller turbine for pipe inline installation,” Renew. Energy, vol. 95, pp. 356–366, Sep. 2016, doi: 10.1016/J.RENENE.2016.04.023.

B. Baidar, J. Nicolle, B. K. Gandhi, and M. J. Cervantes, “Sensitivity of the Winter-Kennedy method to different guide vane openings on an axial machine,” Flow Meas. Instrum., vol. 68, p. 101585, Aug. 2019, doi: 10.1016/J.FLOWMEASINST.2019.101585.

Q. M. B. Soesanto, P. Widiyanto, A. Susatyo, and E. Yazid, “Cascade optimization of an axial-flow hydraulic turbine type propeller by a genetic algorithm,” Int. J. Technol., vol. 10, no. 1, pp. 200–211, 2019, doi: 10.14716/IJTECH.V10I1.1744.

D. Borkowski, M. Węgiel, P. Ocłoń, and T. Węgiel, “CFD model and experimental verification of water turbine integrated with electrical generator,” Energy, vol. 185, pp. 875–883, Oct. 2019, doi: 10.1016/J.ENERGY.2019.07.091.

A. S. Karthik, A. S. Menasinkai, C. C. Kokatnur, and S. N. Kurbet, “Design and Static Analysis of Micro Hydro Kaplan Turbine Blade,” Int. J. Emerg. Trends Sci. Technol., vol. 01, no. 03, pp. 268–271, 2014.

Erinofiardi et al., “A Review on Micro Hydropower in Indonesia,” Energy Procedia, vol. 110, pp. 316–321, Mar. 2017, doi: 10.1016/J.EGYPRO.2017.03.146.

D. Hartono, S. H. Hastuti, A. Halimatussadiah, A. Saraswati, A. F. Mita, and V. Indriani, “Comparing the impacts of fossil and Renewable energy investments in Indonesia: A simple general equilibrium analysis,” Heliyon, vol. 6, no. 6, p. e04120, Jun. 2020, doi: 10.1016/J.HELIYON.2020.E04120.

“Performance Investigation of the Savonius Horizontal Water Turbine Accounting for Stage Rotor Design,” 2020, doi: 10.18178/ijmerr.9.2.184-189.

Kasman, R. Hantoro, and I. L. Eptanto, “Study potency of hydrokinetic energy in discharge Balambano hydro electric power plant,” AIP Conf. Proc., vol. 2088, no. 1, p. 030015, Mar. 2019, doi: 10.1063/1.5095320.

A. H. Elbatran, M. W. Abdel-Hamed, O. B. Yaakob, Y. M. Ahmed, and M. Arif Ismail, “Hydro Power and Turbine Systems Reviews,” J. Teknol., vol. 74, no. 5, pp. 83–90, May 2015, doi: 10.11113/JT.V74.4646.

O. Paish, “Small hydro power: technology and current status,” Renew. Sustain. Energy Rev., vol. 6, no. 6, pp. 537–556, Dec. 2002, doi: 10.1016/S1364-0321(02)00006-0.

R. B. Astro, H. Doa, and H. Hendro, “FISIKA KONTEKSTUAL PEMBANGKIT LISTRIK TENAGA MIKROHIDRO,” ORBITA J. Kajian, Inov. dan Apl. Pendidik. Fis., vol. 6, no. 1, pp. 142–149, May 2020, Accessed: Feb. 06, 2022. [Online]. Available: http://journal.ummat.ac.id/index.php/orbita/article/view/1858.

O. B. Yaakob, Y. M. Ahmed, A. H. Elbatran, and H. M. Shabara, “A Review on Micro Hydro Gravitational Vortex Power and Turbine Systems,” J. Teknol., vol. 69, no. 7, pp. 1–7, Jul. 2014, doi: 10.11113/JT.V69.3259.

K. Monkova et al., “Condition Monitoring of Kaplan Turbine Bearings Using Vibro-diagnostics,” 2020, doi: 10.18178/ijmerr.9.8.1182-1188.

D. Nan, T. Shigemitsu, S. Zhao, and Y. Takeshima, “Internal flow and performance with foreign vegetable materials in a contra-rotating small hydro-turbine,” Int. J. Fluid Mach. Syst., vol. 10, no. 4, pp. 385–393, 2017, doi: 10.5293/IJFMS.2017.10.4.385.

Z. Lillahulhaq, A. Muchyiddin, R. W. Suhadak, I. Amirullah, F. D. Sandy, and A. C. Embot, “Experimental Study Wind Turbine Performance of Straight-Savonius and Ice-Wind Type on the Similar proportion Aspect Ratio,” J. Phys. Conf. Ser., vol. 2117, no. 1, p. 012008, Nov. 2021, doi: 10.1088/1742-6596/2117/1/012008.

Refbacks

  • There are currently no refbacks.