Klasifikasi Citra Diabetic Foot Ulcer Menggunakan ResNet50 dengan Evaluasi Confusion Matrix pada Dataset Validasi
Abstract
Keywords
Full Text:
PDFReferences
M. Goyal et al., “DFU2020: A Comprehensive Dataset for Diabetic Foot Ulcer Classification and Localization,” arXiv preprint arXiv:2004.11853, 2020.
L. Alzubaidi et al., “Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions,” Journal of Big Data, vol. 8, p. 53, 2021.
G. M. W. Tangka, A. Rantepadang, G. A. Sandag, R. J. Lontaan, and W. G. Mokodaser, “Classification of Diabetic Wounds Using Transfer Learning Model: EfficientNetB1 and ResNet50,” CogITo Smart Journal, vol. 11, no. 1, pp. 1-12, 2025.
N. Fitriah and S. Sriani, “Classification of Foot Wound Severity in Type 2 Diabetes Mellitus Patients Using MobileNetV2-Based Convolutional Neural Network,” Journal of Applied Intelligent System (JAIC), vol. 9, no. 5, pp. 110-115, 2025.
S. Arifin, I. Tahyudin, and F. S. Utomo, “Perbandingan Model CNN, LSTM, dan FNN dalam Klasifikasi Kulit Penderita Diabetes,” Jurnal Pendidikan dan Teknologi Indonesia, vol. 5, no. 3, pp. 571-583, 2025.
A. N. Hidayah, F. Adiputra, and M. Koeshardianto, “Klasifikasi Citra Diabetic Retinopathy Menggunakan CNN dengan Arsitektur VGG-16,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 9, no. 2, pp. 1308-1315, 2025.
J. E. Widyaya and S. Budi, “Pengaruh Preprocessing Terhadap Klasifikasi Diabetic Retinopathy dengan Pendekatan Transfer Learning Convolutional Neural Network,” JuTISI (Jurnal Teknik Informatika dan Sistem Informasi), vol. 7, no. 1, pp. 1-10, 2021.
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Rhiziqo Adjie Syahputra, Wahyu Firmantara, dan Sofyano Fadilah Rosyad

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.