Klasifikasi Jenis Wayang menggunakan Convolutional Neural Network (CNN) dan Optimasi Adaptive Moment Estimation (ADAM)
Abstract
Keywords
Full Text:
PDFReferences
F. Nungki Anjani and U. PGRI Yogyakarta, “Kesenian Wayang Kulit Sebagai Sarana Publikasi Sejarah Dalam Penyebaran Islam Di Jawa Informasi Artikel Abstract,” Journal of Social Science and Education e-ASANKA: Journal of Social Science and Education, vol. 05, pp. 21–28, 2024.
E. Setiawan, “Nilai Filosofi Wayang Kulit Sebagai Media Dakwah,” 2020. [Online]. Available: http://alhikmah.iain-jember.ac.id/
A. P. L. Girsang, R. Agustina, S. W. Nugroho, and K. D. Ramadani, Stastistik Sosial Budaya. Jakarta: Badan Pusat Statistik, 2021.
Rima Dias Ramadhani, A. Nur Aziz Thohari, C. Kartiko, A. Junaidi, T. Ginanjar Laksana, and N. Alim Setya Nugraha, “Optimasi Akurasi Metode Convolutional Neural Network untuk Identifikasi Jenis Sampah,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 2, pp. 312–318, Apr. 2021, doi: 10.29207/resti.v5i2.2754.
I. Maulana, H. Sastypratiwi, H. Muhardi, N. Safriadi, and H. Sujaini, “Implementasi Convolutional Neural Network (CNN) untuk Klasifikasi Motif Batik pada Aplikasi Computer Vision Berbasis Android,” JEPIN (Jurnal Edukasi dan Penelitian Informatika) , vol. 3, 2023.
F. Rohman, N. Awalin, S. Perkembangan, D. Perubahan, F. Wayang, and D. Masyarakat, “Sejarah Perkembangan Dan Perubahan Fungsi Wayang Dalam Masyarakat (History Of Development And Change Of Wayang Functions In Society),” 2019.
M. Khoirur Roziqin and U. K. A Wahab Hasbullah, “Nilai- nilai Islam dalam Tokoh Pewayangan,” 2020.
P. Ronaldo, S. T. Filsafat, T. Widya, and S. Malang, “Kajian Nilai-Nilai Filosofis Kesenian Wayang Kulit Dalam Kehidupan Masyarakat Jawa,” 82 | Jurnal Ilmu Budaya, vol. 10, no. 1, 2023.
U. A. Bhatti, H. Tang, G. Wu, S. Marjan, and A. Hussain, “Deep Learning with Graph Convolutional Networks: An Overview and Latest Applications in Computational Intelligence,” 2023, Wiley-Hindawi. doi: 10.1155/2023/8342104.
L. Jing, P. Vincent, Y. LeCun, and Y. Tian, “Understanding Dimensional Collapse in Contrastive Self-supervised Learning,” Oct. 2021, [Online]. Available: http://arxiv.org/abs/2110.09348
E. Xie et al., “DetCo: Unsupervised Contrastive Learning for Object Detection,” Feb. 2021, [Online]. Available: http://arxiv.org/abs/2102.04803
D. Irfansyah et al., “Arsitektur Convolutional Neural Network (CNN) Alexnet Untuk Klasifikasi Hama Pada Citra Daun Tanaman Kopi,” vol. 6, no. 2, 2021, [Online]. Available: https://data.mendeley.com/datasets/c5yvn32dzg/2.
Y. Arouri and M. Sayyafzadeh, “An adaptive moment estimation framework for well placement optimization,” Comput Geosci, vol. 26, no. 4, pp. 957–973, Aug. 2022, doi: 10.1007/s10596-022-10135-9.
M. Heydarian, T. E. Doyle, and R. Samavi, “MLCM: Multi-Label Confusion Matrix,” IEEE Access, vol. 10, pp. 19083–19095, 2022, doi: 10.1109/ACCESS.2022.3151048.
S. K. Paul et al., “An Adam based CNN and LSTM approach for sign language recognition in real time for deaf people,” Bulletin of Electrical Engineering and Informatics, vol. 13, no. 1, pp. 499–509, Feb. 2024, doi: 10.11591/eei.v13i1.6059.
DOI: https://doi.org/10.31284/j.kernel.2024.v5i2.6862
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 NUR EZA IMANDAYANTI

This work is licensed under a Creative Commons Attribution 4.0 International License.
Diindeks oleh:
