Decision Support to Improve Railway Track Maintenance in Indonesia: A life Cycle Cost Approach

Rachmad Indrakusuma, Nafilah El Hafizah, Dicky Rahmadiar Aulial Ardi

Abstract

Railway infrastructure is a complex asset and must have a long service life. Therefore, effective maintenance methods are required to achieve optimal results throughout the life cycle. Life Cycle Cost (LCC) is a method of evaluating the total cost associated with the service life of a system and can also be used to determine the most cost-effective method in the long term. This research begins by discussing the failure of major track components such as rails, sleepers and ballast. With the literature study, critical track component degradation models can be developed to identify the causes of failures. Material selection analyses is used to ensure optimal selection in terms of cost and performance. The appropriate type of maintenance is determined to ensure proper and safe operation of the railway track system. The main purpose of this paper is to determine the effective and efficient methods for maintaining railway tracks in Indonesia. In this study, the estimated degradation models of track components are used as the basis for determining component material selection. Existing types of railway maintenance are discussed and involve determining the type of maintenance based on LCC analysis to achieve the most cost-effective method.

Keywords

Infrastructure, Life Cycle Cost, Maintenance, Railway

Full Text:

PDF

References

T. Lidén, “Railway infrastructure maintenance - A survey of planning problems and conducted research,” Transp. Res. Procedia, vol. 10, no. July, pp. 574–583, 2015, doi: 10.1016/j.trpro.2015.09.011.

PT. Kereta Api Indonesia (Persero), “Annual and Sustainability Report,” 2021.

A. Calle-Cordón et al., “Combined RAMS and LCC analysis in railway and road transport infrastructures,” 7th Transp. Res. Arena, no. April, 2018, doi: 10.5281/zenodo.1483661.

Y. Asiedu and P. Gu, “Product life cycle cost analysis: State of the art review,” Int. J. Prod. Res., vol. 36, no. 4, pp. 883–908, Apr. 1998, doi: 10.1080/002075498193444.

Paul N. Edwards, Infrastructure and Modernity: Force, Time, and Social Organization in the History of Sociotechnical Systems. Citeseer, 2003. [Online]. Available: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=ecd4a82d57bc29c63bb72c734e80cca76b47e41a

M. F. Ibrahim, “Improvements and integration of a public transport system: the case of Singapore,” Cities, vol. 20, no. 3, pp. 205–216, Jun. 2003, doi: 10.1016/S0264-2751(03)00014-3.

T. Lidén, “Railway Infrastructure Maintenance - A Survey of Planning Problems and Conducted Research,” Transp. Res. Procedia, vol. 10, pp. 574–583, 2015, doi: 10.1016/j.trpro.2015.09.011.

A. Falamarzi, S. Moridpour, and M. Nazem, “A review of rail track degradation prediction models,” Aust. J. Civ. Eng., vol. 17, no. 2, pp. 152–166, Jul. 2019, doi: 10.1080/14488353.2019.1667710.

J. Zhao, A. H. C. Chan, C. Roberts, and A. B. Stirling, “Assessing the Economic Life of Rail Using a Stochastic Analysis of Failures,” in Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, Mar. 2006, vol. 220, no. 2, pp. 103–111. doi: 10.1243/09544097JRRT30.

A. M. T. and R. J. Yadav, “Failure analysis of alumino thermic welded rail,” Int. J. Latest Trends Eng. Technol., vol. 8, no. 3, 2017, doi: 10.21172/1.83.028.

L. B. Godefroid, G. L. Faria, L. C. Cândido, and T. G. Viana, “Failure analysis of recurrent cases of fatigue fracture in flash butt welded rails,” Eng. Fail. Anal., vol. 58, pp. 407–416, Dec. 2015, doi: 10.1016/j.engfailanal.2015.05.022.

A. Jamshidi et al., “A Big Data Analysis Approach for Rail Failure Risk Assessment,” Risk Anal., vol. 37, no. 8, pp. 1495–1507, Aug. 2017, doi: 10.1111/risa.12836.

G. Fedorko, V. Molnár, P. Blaho, J. Gašparík, and V. Zitrický, “Failure analysis of cyclic damage to a railway rail – A case study,” Eng. Fail. Anal., vol. 116, p. 104732, Oct. 2020, doi: 10.1016/j.engfailanal.2020.104732.

Z. Xue, Y. Xu, M. Hu, and S. Li, “Systematic review: Ultrasonic technology for detecting rail defects,” Constr. Build. Mater., vol. 368, no. October 2022, p. 130409, 2023, doi: 10.1016/j.conbuildmat.2023.130409.

É. A. Silva, D. Pokropski, R. You, and S. Kaewunruen, “Comparison of structural design methods for railway composites and plastic sleepers and bearers,” Aust. J. Struct. Eng., vol. 18, no. 3, pp. 160–177, 2017, doi: 10.1080/13287982.2017.1382045.

C. González-Nicieza, M. I. Álvarez-Fernández, A. Menéndez-Díaz, A. E. Álvarez-Vigil, and F. Ariznavarreta-Fernández, “Failure analysis of concrete sleepers in heavy haul railway tracks,” Eng. Fail. Anal., vol. 15, no. 1–2, pp. 90–117, Jan. 2008, doi: 10.1016/j.engfailanal.2006.11.021.

W. Ferdous and A. Manalo, “Failures of mainline railway sleepers and suggested remedies - Review of current practice,” Eng. Fail. Anal., vol. 44, pp. 17–35, 2014, doi: 10.1016/j.engfailanal.2014.04.020.

S. Senaratne, O. Mirza, T. Dekruif, and C. Camille, “Life cycle cost analysis of alternative railway track support material: A case study of the Sydney harbour bridge,” Journal of Cleaner Production, vol. 276. Elsevier Ltd, Dec. 10, 2020. doi: 10.1016/j.jclepro.2020.124258.

S. Thompson, C. King, J. Rodwell, S. Rayburg, and M. Neave, “Life Cycle Cost and Assessment of Alternative Railway Sleeper Materials,” Sustain., vol. 14, no. 14, pp. 1–18, 2022, doi: 10.3390/su14148814.

C. Camille, O. Mirza, S. Senaratne, B. Kirkland, and T. Clarke, “Life cycle cost analysis of macro synthetic fibre reinforced concrete for railway sleeper applications,” Struct. Infrastruct. Eng., vol. 0, no. 0, pp. 1–15, 2022, doi: 10.1080/15732479.2022.2095408.

M. Koohmishi and M. Palassi, “Degradation of railway ballast under impact loading considering the morphological properties of aggregate,” Transp. Geotech., vol. 25, no. January, p. 100398, 2020, doi: 10.1016/j.trgeo.2020.100398.

J. Sadeghi, A. R. Tolou Kian, M. Chopani, and A. Khanmoradi, “Effects of particle gradations on cyclic behavior of ballast contaminated with sand,” Constr. Build. Mater., vol. 342, Aug. 2022, doi: 10.1016/j.conbuildmat.2022.127943.

G. D’Angelo, S. Bressi, M. Giunta, D. Lo Presti, and N. Thom, “Novel performance-based technique for predicting maintenance strategy of bitumen stabilised ballast,” Constr. Build. Mater., vol. 161, pp. 1–8, 2018, doi: 10.1016/j.conbuildmat.2017.11.115.

X. F. Li, S. I. Doh, G. Q. Jing, B. W. Chong, A. L. Suil, and S. C. Chin, “A comparative review on American, European and Chinese standard for railway concrete sleeper,” Phys. Chem. Earth, vol. 124, no. P2, p. 103073, 2021, doi: 10.1016/j.pce.2021.103073.

J. J. Pons, I. Villalba Sanchis, R. Insa Franco, and V. Yepes, “Life cycle assessment of a railway tracks substructures: Comparison of ballast and ballastless rail tracks,” Environ. Impact Assess. Rev., vol. 85, p. 106444, Nov. 2020, doi: 10.1016/j.eiar.2020.106444.

F. G. Praticò and M. Giunta, “An integrative approach RAMS-LCC to support decision on design and maintenance of rail track,” in 10th International Conference on Environmental Engineering, ICEE 2017, 2017. doi: 10.3846/enviro.2017.144.

M. Ben-Daya, U. Kumar, and D. N. . Murthy, Introduction to maintenance engineering: modelling, optimization and management. John Wiley & Sons, Ltd, 2016.

K. Argyropoulou, C. Iliopoulou, and K. Kepaptsoglou, “Model for Corrective Maintenance Scheduling of Rail Transit Networks: Application to Athens Metro,” J. Infrastruct. Syst., vol. 25, no. 1, pp. 1–11, 2019, doi: 10.1061/(asce)is.1943-555x.0000457.

S. A. Journal and I. E. May, “Improving the Response Time for the Corrective Maintenance of Rail,” vol. 30, no. May, pp. 235–247, 2019.

F. Shalabi and Y. Turkan, “IFC BIM-Based Facility Management Approach to Optimize Data Collection for Corrective Maintenance,” J. Perform. Constr. Facil., vol. 31, no. 1, pp. 1–13, 2017, doi: 10.1061/(asce)cf.1943-5509.0000941.

Y. Wang, C. Deng, J. Wu, Y. Wang, and Y. Xiong, “A corrective maintenance scheme for engineering equipment,” Eng. Fail. Anal., vol. 36, pp. 269–283, 2014, doi: 10.1016/j.engfailanal.2013.10.006.

E. Wari, W. Zhu, and G. Lim, “Maintenance in the downstream petroleum industry: A review on methodology and implementation,” Comput. Chem. Eng., vol. 172, no. February, p. 108177, 2023, doi: 10.1016/j.compchemeng.2023.108177.

S. Hanafi, R. Benmansour, and S. Khalouli, “Ant colony optimisation combined with variable neighbourhood search for scheduling preventive railway maintenance activities,” Int. J. Intell. Eng. Informatics, vol. 6, no. 1/2, p. 78, 2018, doi: 10.1504/ijiei.2018.10012067.

R. Macedo, R. Benmansour, A. Artiba, N. Mladenović, and D. Urošević, “Scheduling preventive railway maintenance activities with resource constraints,” Electron. Notes Discret. Math., vol. 58, pp. 215–222, 2017, doi: 10.1016/j.endm.2017.03.028.

C. Stenström, A. Parida, and U. Kumar, “Measuring and monitoring operational availability of rail infrastructure,” Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit, vol. 230, no. 5, pp. 1457–1468, Jun. 2016, doi: 10.1177/0954409715592189.

C. Vale, I. M. Ribeiro, and R. Calçada, “Integer programming to optimize tamping in railway tracks as preventive maintenance,” J. Transp. Eng., vol. 138, no. 1, pp. 123–131, 2011, doi: 10.1061/(ASCE)TE.1943-5436.0000296.

L. S. Minsili, M. D. Jérémie, G. L. Tsebo Simo, and C. Simo, “Preventive maintenance of railway tracks: Ballast performance anticipation in the Cameroon railway,” Res. J. Appl. Sci. Eng. Technol., vol. 4, no. 5, pp. 398–406, 2012.

A. Bakhtiary, J. A. Zakeri, and S. Mohammadzadeh, “An opportunistic preventive maintenance policy for tamping scheduling of railway tracks,” Int. J. Rail Transp., vol. 9, no. 1, pp. 1–22, 2021, doi: 10.1080/23248378.2020.1737256.

Z. Su, A. Jamshidi, A. Núñez, S. Baldi, and B. De Schutter, “Multi-level condition-based maintenance planning for railway infrastructures – A scenario-based chance-constrained approach,” Transp. Res. Part C Emerg. Technol., vol. 84, pp. 92–123, 2017, doi: 10.1016/j.trc.2017.08.018.

Z. Su, A. Núñez, S. Baldi, and B. De Schutter, “Model predictive control for rail condition-based maintenance: A multilevel approach,” IEEE Conf. Intell. Transp. Syst. Proceedings, ITSC, vol. 0, pp. 354–359, 2016, doi: 10.1109/ITSC.2016.7795579.

B. Baasch, M. Roth, and J. C. Groos, “In-service condition monitoring of rail tracks: On an on-board low-cost multi-sensor system for condition based maintenance of railway tracks,” Proc. 30th Eur. Saf. Reliab. Conf. 15th Probabilistic Saf. Assess. Manag. Conf., vol. 70, no. 1, pp. 76–79, 2018.

A. Jamshidi et al., “A decision support approach for condition-based maintenance of rails based on big data analysis,” Transp. Res. Part C Emerg. Technol., vol. 95, no. July, pp. 185–206, 2018, doi: 10.1016/j.trc.2018.07.007.

M. Wen, R. Li, and K. B. Salling, “Optimization of preventive condition-based tamping for railway tracks,” Eur. J. Oper. Res., vol. 252, no. 2, pp. 455–465, 2016, doi: 10.1016/j.ejor.2016.01.024.

A. Zoeteman, “Life Cycle Costing applied to railway design and maintenance: Creating a dashboard for infrastructure performance planning,” Adv. Transp., vol. 14, pp. 647–656, 2003.

D. Galar, P. Sandborn, and U. Kumar, Maintenance Costs and Life Cycle Cost Analysis. CRC Press, Taylor and Francis Group, 2017.

S. F. Krisnanda, “Implementasi Life Cycle Cost Pada Gedung Bank Mandiri Syariah Yogyakarta,” FROPIL (Forum Prof. Tek. Sipil), vol. 8, no. 1, pp. 46–55, 2020, doi: 10.33019/fropil.v8i1.1780.

A. P. Patra, P. Söderholm, and U. Kumar, “Uncertainty estimation in railway track life-cycle cost: A case study from Swedish National Rail Administration,” Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit, vol. 223, no. 3, pp. 285–293, 2009, doi: 10.1243/09544097JRRT235.

C. Esveld, Modern Railway Track, Second Edi. Delft University of Technology Editing:, 2001.

E. Korpi and T. Ala-Risku, “Life cycle costing: A review of published case studies,” Manag. Audit. J., vol. 23, no. 3, pp. 240–261, 2008, doi: 10.1108/02686900810857703.

Peraturan Menteri, “MENTERIPERHUBUNGAN REPUBLIK INDONESIA,” Jakarta, Dec. 2012.

BSI Standards, BS EN 50126-1:2017 The Specification and Demonstration of Reliability , Availability , Maintainability and Safety (RAMS), no. Part 1. 2017. [Online]. Available: file:///C:/Users/mlincoln/OneDrive/Mark/Msc materials/Project PRCP/Notes and Refs/BS EN 50126-2-2017--[2019-08-28--06-07-25 PM].pdf

Kementerian Perhubungan, “Peraturan Menteri Perhubungan Nomor 30 tahun 2011 tentang Tata Cara Pengujian dan Pemberian Sertifikat Prasarana Perkeretaapian.” 2011.

Kementerian Perhubungan, Peraturan Menteri Perhubungan No. 32 Tahun 2011 tentang Standar Dan Tata Cara Perawatan Prasarana Perkeretaapian. 2011.

Kementerian Perhubungan, Peraturan Menteri Perhubungan No. 31 Tahun 2011 tentang Standar Dan Tata Cara Pemeriksaan Prasarana Perkeretaapian. 2011.

M. J. Kaiser and B. Snyder, “Offshore wind energy installation and decommissioning cost estimation in the U.S. outer continental shelf,” no. November, p. 340, 2010.

B. Li et al., “A Strategy for Determining the Decommissioning Life of Energy Equipment Based on Economic Factors and Operational Stability,” Sustain., vol. 14, no. 24, 2022, doi: 10.3390/su142416378.

L. Sdino, P. Rosasco, and G. Lombardini, The evaluation of urban regeneration processes. 2020. doi: 10.1007/978-3-030-33256-3_6.

F. Camci, “A note to life cycle cost for railway condition monitoring,” Transp. Res. Part E Logist. Transp. Rev., vol. 45, no. 3, pp. 457–459, 2009, doi: 10.1016/j.tre.2008.10.002.

A. E. Björn Paulsson, “Cutting the Life-Cycle Cost of Track,” vol. 166, no. 1, 2010.

N. Karpuschenko and P. Trukhanov, “Estimation of the life cycle cost of the upper railway track structure,” in MATEC Web of Conferences, 2018, vol. 216, pp. 1–8. doi: 10.1051/matecconf/201821601008.

L. F. Caetano and P. F. Teixeira, “Optimisation model to schedule railway track renewal operations: a life-cycle cost approach,” Struct. Infrastruct. Eng., vol. 11, no. 11, pp. 1524–1536, Nov. 2015, doi: 10.1080/15732479.2014.982133.

J. Neuhold, M. Landgraf, S. Marschnig, and P. Veit, “Measurement Data-Driven Life-Cycle Management of Railway Track,” Transp. Res. Rec., vol. 2674, no. 11, pp. 685–696, 2020, doi: 10.1177/0361198120946007.

L. F. Caetano and P. F. Teixeira, “Availability approach to optimizing railway track renewal operations,” J. Transp. Eng., vol. 139, no. 9, pp. 941–948, 2013, doi: 10.1061/(ASCE)TE.1943-5436.0000575.

A. P. Patra and Luleå tekniska universitet. Institutionen för samhällsbyggnad och naturresurser., Maintenance decision support models for railway infrastructure using RAMS & LCC analyses. Luleå tekniska universitet, 2009.

D. U. Lee, Y. S., Kim, J. O., Kim, H. C., & Jang, “A study on modeling of life cycle cost for magnetic levitation train,” J. Korean Soc. Railw., vol. 12, no. 6, pp. 1076–1080, 2009.

J. McGlynn, J. D. Campbell, and A. K. S. Jardine, ASSET MANAGEMENT EXCELLENCE, Second Edi. CRC Press, Taylor and Francis Group, 2011.

A. Alavizadeh, “USAGE OF AXIOMATIC DESIGN METHODOLOGY IN THE U.S. INDUSTRIES,” Int. J. Mod. Eng., vol. 10, pp. 76–83, 2010.

Refbacks

  • There are currently no refbacks.