Pengaruh Rasio Asam Sitrat dan 4-carboxy-3-chlorobenzene boronic acid terhadap Quantum Yield dari Graphene Quantum Dots

Adi Permadi, Mutiara Wilson Putri

Abstract

This study investigates the effect of citric acid (CA) and 4-carboxyl-3-chlorobenzeneboronic acid (CBBA) ratio on the Quantum Yield (QY) of Graphene Quantum Dots (GQDs). The hydrothermal synthesis method was employed with various CA/CBBA molar ratios, and the optical properties were analyzed using UV-Vis and photoluminescence (PL) spectroscopy. The results show that increasing the CBBA ratio enhances fluorescence efficiency, with the highest QY of 5.075% obtained at a 1:5 ratio. The addition of CBBA improves surface passivation and reduces non-radiative recombination sites, thereby optimizing the photoluminescence properties. Furthermore, precursor ratio variation influences particle size and functional groups, affecting the solubility and stability of GQDs. These findings highlight the role of CBBA in controlling exciton recombination, making GQDs more efficient for optoelectronic, bioimaging, and biomedical applications. Further studies are needed to explore the long-term effects of CBBA doping on fluorescence stability

Full Text:

PDF

References

P. Gozali Balkanloo, K. Mohammad Sharifi, and A. Poursattar Marjani, “Graphene quantum dots: synthesis, characterization, and application in wastewater treatment: a review,” Mater Adv, vol. 4, no. 19, pp. 4272–4293, 2023, doi: 10.1039/D3MA00372H.

Y. Cui et al., “A Review of Advances in Graphene Quantum Dots: From Preparation and Modification Methods to Application,” C (Basel), vol. 10, no. 1, p. 7, Jan. 2024, doi: 10.3390/c10010007.

V. Bressi, A. Ferlazzo, D. Iannazzo, and C. Espro, “Graphene Quantum Dots by Eco-Friendly Green Synthesis for Electrochemical Sensing: Recent Advances and Future Perspectives,” Nanomaterials, vol. 11, no. 5, p. 1120, Apr. 2021, doi: 10.3390/nano11051120.

C. Das, M. Sillanpää, S. A. Zaidi, M. A. Khan, and G. Biswas, “Current trends in carbon-based quantum dots development from solid wastes and their applications,” Environmental Science and Pollution Research, vol. 30, no. 16, pp. 45528–45554, Feb. 2023, doi: 10.1007/s11356-023-25822-y.

B. D. Mansuriya and Z. Altintas, “Applications of Graphene Quantum Dots in Biomedical Sensors.,” Sensors (Basel), vol. 20, no. 4, Feb. 2020, doi: 10.3390/s20041072.

P. R. Kharangarh, S. Umapathy, and G. Singh, “Effect of defects on quantum yield in blue emitting photoluminescent nitrogen doped graphene quantum dots,” J Appl Phys, vol. 122, no. 14, Oct. 2017, doi: 10.1063/1.4991693.

E. I. Wafiyah, I. Isnaeni, and D. Beri, “Sintesis Dan Sifat Optik Graphene Quantum DOTS Dengan Metode Elektrokimia,” Jurnal Pendidikan Tambusai, vol. 8, no. 2, pp. 22800–22807, 2024.

D. Kurniawan, R.-J. Weng, Y.-Y. Chen, M. R. Rahardja, Z. C. Nanaricka, and W.-H. Chiang, “Recent advances in the graphene quantum dot-based biological and environmental sensors,” Sensors and Actuators Reports, vol. 4, p. 100130, Nov. 2022, doi: 10.1016/j.snr.2022.100130.

C. Zhao et al., “Synthesis of graphene quantum dots and their applications in drug delivery,” J Nanobiotechnology, vol. 18, no. 1, p. 142, Dec. 2020, doi: 10.1186/s12951-020-00698-z.

K. Umbu Henggu and Y. Nurdiansyah, “Review dari Metabolisme Karbohidrat, Lipid, Protein, dan Asam Nukleat,” QUIMICA: Jurnal Kimia Sains dan Terapan, vol. 3, no. 2, pp. 9–17, Aug. 2022, doi: 10.33059/jq.v3i2.5688.

J. Belza, A. Opletalová, and K. Poláková, “Carbon dots for virus detection and therapy,” Microchimica Acta, vol. 188, no. 12, p. 430, Dec. 2021, doi: 10.1007/s00604-021-05076-6.

P. A. Rasheed, M. Ankitha, V. K. Pillai, and S. Alwarappan, “Graphene quantum dots for biosensing and bioimaging,” RSC Adv, vol. 14, no. 23, pp. 16001–16023, 2024, doi: 10.1039/D4RA01431F.

J. Belza, A. Opletalová, and K. Poláková, “Carbon dots for virus detection and therapy,” Microchimica Acta, vol. 188, no. 12, p. 430, Dec. 2021, doi: 10.1007/s00604-021-05076-6.

G. G. Njema, J. K. Kibet, and S. M. Ngari, “Performance optimization of a novel perovskite solar cell with power conversion efficiency exceeding 37% based on methylammonium tin iodide,” Next Energy, vol. 6, p. 100182, Jan. 2025, doi: 10.1016/j.nxener.2024.100182.

E. Yuniarti, “Sintesis Dan Karakteristik Optik Carbon Quantum Dot Yang Berasal Dari Asam Sitrat Dengan Variasi Massa Urea,” Komunikasi Fisika Indonesia, vol. 18, no. 2, p. 99, Jul. 2021, doi: 10.31258/jkfi.18.2.99-105.

M. C. Biswas, M. T. Islam, P. K. Nandy, and M. M. Hossain, “Graphene Quantum Dots (GQDs) for Bioimaging and Drug Delivery Applications: A Review,” ACS Mater Lett, vol. 3, no. 6, pp. 889–911, Jun. 2021, doi: 10.1021/acsmaterialslett.0c00550.

M. Z. Fahmi et al., “Design of boronic acid-attributed carbon dots on inhibits HIV-1 entry,” RSC Adv, vol. 6, no. 95, pp. 92996–93002, 2016, doi: 10.1039/c6ra21062g.

J. Kong et al., “Carbon Quantum Dots: Properties, Preparation, and Applications,” Molecules, vol. 29, no. 9, p. 2002, Apr. 2024, doi: 10.3390/molecules29092002.

Y.-Y. Aung, A. N. Kristanti, H. V. Lee, and M. Z. Fahmi, “Boronic-Acid-Modified Nanomaterials for Biomedical Applications,” ACS Omega, vol. 6, no. 28, pp. 17750–17765, Jul. 2021, doi: 10.1021/acsomega.1c01352.

P. K. Jiwanti, B. Y. Wardhana, L. G. Sutanto, D. M. M. Dewi, I. Z. D. Putri, and I. N. I. Savitri, “Recent Development of Nano-Carbon Material in Pharmaceutical Application: A Review,” Molecules, vol. 27, no. 21, p. 7578, Nov. 2022, doi: 10.3390/molecules27217578.

Y. Huang et al., “Advances in synthesis of the graphene quantum dots from varied raw materials,” Arabian Journal of Chemistry, vol. 17, no. 2, p. 105533, Feb. 2024, doi: 10.1016/j.arabjc.2023.105533.

X. Yang, G. Mu, K. Weng, and X. Tang, “Advances in High-Efficiency Blue OLED Materials,” Photonics, vol. 11, no. 9, p. 864, Sep. 2024, doi: 10.3390/photonics11090864.

C. Murawski, K. Leo, and M. C. Gather, “Efficiency Roll‐Off in Organic Light‐Emitting Diodes,” Advanced Materials, vol. 25, no. 47, pp. 6801–6827, Dec. 2013, doi: 10.1002/adma.201301603.

L. Zhang et al., “Advances in the Application of Perovskite Materials,” Nanomicro Lett, vol. 15, no. 1, p. 177, Dec. 2023, doi: 10.1007/s40820-023-01140-3.

Jumardin, A. Maddu, K. Santoso, and Isnaeni, “Karakteristik Sifat Optik Nanopartikel Karbon (Carbon Dots) Dengan Metode Uv-Vis Drs (Ultraviolet-Visible Diffuse Reflectance Spectroscopy),” JFT: Jurnal Fisika dan Terapannya, vol. 9, no. 1, pp. 1–15, Jul. 2022, doi: 10.24252/jft.v9i1.28815.

A. Kaur, K. Pandey, R. Kaur, N. Vashishat, and M. Kaur, “Nanocomposites of Carbon Quantum Dots and Graphene Quantum Dots: Environmental Applications as Sensors,” Chemosensors, vol. 10, no. 9, p. 367, Sep. 2022, doi: 10.3390/chemosensors10090367.

A. BAHTIAR, “Pengaruh Rasio Molar Asam Sitrat Dan Thiourea Pada Spektra Absorbansi Dan Fluoresensi Larutan Carbon Quantum Dots,” Jurnal Material dan Energi Indonesia, vol. 11, no. 2, p. 54, Feb. 2022, doi: 10.24198/jme.v11i2.37296.

J. W. Lim, “Polymer Materials for Optoelectronics and Energy Applications,” Materials, vol. 17, no. 15, p. 3698, Jul. 2024, doi: 10.3390/ma17153698.

S. Manzoor et al., “Carbon dots applications for development of sustainable technologies for food safety: A comprehensive review,” Applied Food Research, vol. 3, no. 1, p. 100263, Jun. 2023, doi: 10.1016/j.afres.2023.100263.

S. Das, L. Ngashangva, and P. Goswami, “Carbon Dots: An Emerging Smart Material for Analytical Applications,” Micromachines (Basel), vol. 12, no. 1, p. 84, Jan. 2021, doi: 10.3390/mi12010084.

Refbacks

  • There are currently no refbacks.