Redesign of Anaerobic-Aerobic Biofilter for Domestic Wastewater Treatment Plant In Textile Industry

Rachmanu Eko Handriyono, Amelia Kencana Rukmi

Abstract


One of the textile industries in Pasuruan already has a Domestic Wastewater Treatment Plant (WWTP) with a capacity of 35 m3 /day. The treatment process combined physical, chemical, and biological processes using an anaerobic-aerobic biofilter. The domestic WWTP consists of a collection tank, equalization tank, anaerobic-aerobic biofilter tank, a filtration tank, and a chlorination tank. Existing conditions indicate that the domestic wastewater generated exceeds the capacity of the WWTP. Additional employees become one of the factors causing the increase in domestic wastewater discharge. Inadequate capacity has forced the company to bypass domestic waste into rivers. This biofilter was chosen because it could reduce high BOD values, have low operating costs, and operate efficiently. The anaerobic-aerobic biofilter reactor consists of a pre-settling tank, anaerobic tank, aerobic tank, and final settling tank. The evaluation results denoted that detention time in pre-settling, anaerobic, and settling units did not meet the design criteria. Thus, changing the design according to the design criteria. The redesign result of the anaerobic biofilter includes the pre-settling tank with a diameter of 2,5 m and a length of 3 m, an anaerobic tank with a diameter of 2,5 m and a length of 15 m, so that the total volume in the anaerobic reactor is 88.3 m3 . Then anaerobic bath with a diameter of 2,5 m and a length of 6 m and a final settling tank with a diameter of 2,5 m and a length of 1,5 m so that the total volume in the aerobic biofilter reactor is 36,7 m3 .

Full Text:

PDF

References


Said, Nusa Idaman, Teknologi Pengolahan Air Limbah. Jakarta: Erlangga, 2017.

Kholif, Muhammad Al, Annisa Rifka Alifia, Pungut, Sugito, and Joko Sutrisno, “Kombinasi Teknologi Filtrasi Dan Anaerobik Buffled Reaktor (ABR) Untuk Menglah Air Limbah Domestik”, Jurnal Kesehatan Masyarakat Indonesia, Vol. 15, No. 2, pp. 19-24., 2020, doi: https://doi.org/10.26714/jkmi.15.2.2020.19-24.

Kodoatie R. dan Syarief R., “Tata Ruang Air”, Yogyakarta: Andi Offset, 2010

Purwatiningrum, Oktina, “Gambaran Instalasi Pengolahan Air Limbah Domestic Komunal Di Kelurahan Simokerto Kecamatan Simokerto Kota Surabaya”, Jurnal Kesehatan Lingkungan, Vol. 10, No. 2, pp. 243-253, 2018, doi: https://doi.org/10.20473/jkl.v10i2.2018.211-219.

A. E. South and E. Nazir, “Karakteristik Air Limbah Rumah Tangga (Grey Water) Pada Salah Satu Perumahan Menengah Keatas Yang Berada Di Tangerang Selatan”, Ecolab, Vol. 10, No. 2, pp. 47-102, 2016, doi: https://doi.org/10.20886/jklh.2016.10.2.80-88.

Iskandar S., Fransisca L., Arianto E., and Ruslan A., Sistem Pengolahan Air Limbah Domestik Terpusat Skala Pemukiman. Jakarta: Kementerian Pekerjaan Umum dan Perumahan Rakyat Direktorat Jendral Cipta Karya Direktorat Pengembangan Penyehatan Lingkungan Pemukiman, 2016.

Wanda, Analisis Bakteri Coliform pada Air Sumur di Komplek Roudi Manokwari, Makokwari : Universitas Negeri Papua, 2012.

Pratiwi R., Distribusi Bakteri Coliform di SITU Ciledong Depok Jawa Barat. Jakarta: Universitas Indrapura PGRI, 2013.

Nasution M. I., Penentuan Jumlah Ammonia dan Total Padatan Tersuspensi Pada Pengolahan Air Limbah. Medan: Universitas Sumatra Utara, 2008.

Said, Nusa Idaman, “Paket Teknologi Pengolahan Air Limbah Rumah Sakit dengan Sistem Biofilter AnaerobAerob”, Kelompok Teknologi Pengelolaan Air Bersih dan Limbah Cair, Pusat Pengkajian dan Penerapan Teknologi Lingkungan, BPPT, vol. 2, No. 1, pp.52-65 2006, doi: https://media.neliti.com/media/publications/247317-nonea8082519.pdf.

Metcalf and Eddy, Wastewater Engineering: Treatment, Disposal and Reuse, Third Edition, New York: McGraw-Hill,




DOI: https://doi.org/10.31284/j.jcepd.2022.v1i1.3049

Refbacks

  • There are currently no refbacks.



Journal of Civil Engineering, Planning and Design by FTSP-ITATS .
Based on a work at https://ejurnal.itats.ac.id/jcepd.