Linking Carbonate Facies to Stylolite Distribution of Middle Jurassic Limestone, Onshore Abu Dhabi Oil Field
Abstract
This study examines the relationship between facies and stylolitization in the Upper Araej Member carbonates of onshore Abu Dhabi. Analysis of core and thin sections identified four facies: wispy-laminated skeletal wackestone (F-1), peloidal skeletal mud-dominated packstone (F-2), coated-grain skeletal grainstone (F-3), and peloidal skeletal floatstone (F-4), deposited across a shallow carbonate ramp. Stylolites were described and measured for vertical offset amplitude to assess facies dependence. Results show facies-related tendencies in stylolite amplitude and morphology. Mud-supported facies (especially floatstones and wackestones) tend to display higher variability, with floatstones reaching amplitudes of up to 20 mm, whereas grainstones may also contain isolated high-amplitude stylolites (up to 14 mm). Packstones and wackestones, by contrast, rarely exceed 10-13 mm. Boxplots highlight greater variability in mud-rich facies, whereas grainstones exhibit narrower distributions. Statistical testing (ANOVA, p = 0.109; Kruskal–Wallis, H = 3.38, p = 0.34) indicates no statistically significant differences in mean stylolite amplitude across facies, although descriptive data reveal trends in variability and extremity. Jagged stylolites occur in both mud-rich and grain-supported facies, whereas wispy seams are strongly associated with micrite-rich facies and are largely absent in grainstones. Stylolites in these carbonates may act as both vertical barriers and localized porosity enhancers. Their facies-associated occurrence emphasizes the need to integrate stylolitization into reservoir models to better predict connectivity, compartmentalization, and flow behavior in Middle Jurassic carbonates.
Full Text:
PDFReferences
Wang, X., Chen, S., Feng, G., Xiao, Z., Yuan, H., Xu, S., & Zhao, H. (2022). Delaminated Fracturing and its Controls on Hydrocarbon Accumulation in Carbonate Reservoirs of Weak Deformation Regions: A Case Study of the Yuanba Ultra-Deep Gas Field in Sichuan Basin, China. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.884935
Guangyou, Z., Milkov, A., Zhang, Z., Sun, C., Zhou, X., Chen, F., Han, J., & Zhu, Y. (2019). Formation and preservation of a giant petroleum accumulation in superdeep carbonate reservoirs in the southern Halahatang oil field area, Tarim Basin, China. AAPG Bulletin, 103, 1703–1743. https://doi.org/10.1306/11211817132
Fryar, A. E. (2021). Chapter 2 - Groundwater of carbonate aquifers. In A. Mukherjee, B. R. Scanlon, A. Aureli, S. Langan, H. Guo, & A. A. McKenzie (Eds.), Global Groundwater (pp. 23–34). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-818172-0.00002-5
Sari, A.S., Bahagiarti, S., Suharsono, S., & Prasetyadi, C. (2020). Groundwater quality in Ponjong Karst, Gunungkidul Regency, Special Region of Yogyakarta. JEMT, 1(1), 7–11.
Rodrigues, H. W. L., Mackay, E. J., & Arnold, D. P. (2022). Multi-objective optimization of CO2 recycling operations for CCUS in pre-salt carbonate reservoirs. International Journal of Greenhouse Gas Control, 119, 103719. https://doi.org/https://doi.org/10.1016/j.ijggc.2022.103719
Hargis, C. W., Chen, I. A., Devenney, M., Fernandez, M. J., Gilliam, R. J., & Thatcher, R. P. (2021). Calcium carbonate cement: A carbon capture, utilization, and storage (ccus) technique. Materials, 14(11). https://doi.org/10.3390/ma14112709
Lv, Q., Zheng, R., Zhou, T., Guo, X., Wang, W., Li, J., & Liu, Z. (2022). Visualization study of CO2-EOR in carbonate reservoirs using 2.5D heterogeneous micromodels for CCUS. Fuel, 330, 125533. https://doi.org/https://doi.org/10.1016/j.fuel.2022.125533
Prahastomi, M., Fahruddin, A., Santy, L. D., & Adlan, R. (2024). Depositional Facies Model and Reservoir Quality of Paleogene Limestone in Labengki Island, Southeast Sulawesi Model Fasies Pengendapan dan Mutu Reservoir Batugamping Paleogen di Pulau Labengki, Sulawesi Tenggara. Jurnal Geologi Dan Sumberdaya Mineral, 21. https://doi.org/10.33332/jgsm.geologi.v23.3.189-196
Ehrenberg, S. N., Morad, S., Yaxin, L., & Chen, R. (2016). Stylolites and porosity in a lower cretaceous limestone reservoir, onshore Abu Dhabi, U.A.E. Journal of Sedimentary Research, 86(10), 1228–1247. https://doi.org/10.2110/jsr.2016.68
Mazzullo, S. J., & Harris, P. M. (2009). An Overview of Dissolution Porosity Development in the Deep-Burial Environment, With Examples from Carbonate Reservoirs in the Permian Basin
Deville de Periere, M., Durlet, C., Vennin, E., Caline, B., Boichard, R., & Meyer, A. (2017). Influence of a major exposure surface on the development of microporous micritic limestones - Example of the Upper Mishrif Formation (Cenomanian) of the Middle East. Sedimentary Geology, 353, 96–113. https://doi.org/10.1016/j.sedgeo.2017.03.005
Salindeho, L. M. (2020). Analysis of the relationship between porosity and permeability in reservoir modeling using the petrophysical rock type approach. Journal of Earth and Marine Technology (JEMT), 1(1), 48–55. https://doi.org/10.31284/j.jemt.2020.v1i1.1188
Koepnick, R. B. (1988). Significance of Stylolite Development in Hydrocarbon Reservoirs with an Emphasis on the Lower Cretaceous of the Middle East. In Geol. Soc. Malaysia, Bulletin (Vol. 22).
Morad, D., Nader, F. H., Gasparrini, M., Morad, S., Rossi, C., Marchionda, E., al Darmaki, F., Martines, M., & Hellevang, H. (2018). Comparison of the diagenetic and reservoir quality evolution between the anticline crest and flank of an Upper Jurassic carbonate gas reservoir, Abu Dhabi, United Arab Emirates. Sedimentary Geology, 367, 96–113. https://doi.org/10.1016/j.sedgeo.2018.02.008
Paganoni, M., al Harthi, A., Morad, D., Morad, S., Ceriani, A., Mansurbeg, H., al Suwaidi, A., Al-Aasm, I. S., Ehrenberg, S. N., & Sirat, M. (2016). Impact of stylolitization on diagenesis of a Lower Cretaceous carbonate reservoir from a giant oilfield, Abu Dhabi, United Arab Emirates. Sedimentary Geology, 335, 70–92. https://doi.org/10.1016/j.sedgeo.2016.02.004
Ehrenberg, S. N., Morad, S., Yaxin, L., & Chen, R. (2016). Stylolites and porosity in a lower cretaceous limestone reservoir, onshore Abu Dhabi, U.A.E. Journal of Sedimentary Research, 86(10), 1228–1247. https://doi.org/10.2110/jsr.2016.68
Railsback, L. (1993). Lithologic controls on morphology of pressure-dissolution surfaces (stylolite and dissolution seams) in Paleozoic carbonate rocks from mideastern United States. Journal of Sedimentary Research, 513-522.
Heap, M. J., Baud, P., Reuschlé, T., & Meredith, P. G. (2014). Stylolites in limestones: Barriers to fluid flow? Geology, 42(1), 51–54. https://doi.org/10.1130/G34900.1
Park, W. C., & Schot, E. H. (1968). Stylolites; their nature and origin. Journal of Sedimentary Research, 38(1), 175–191. https://doi.org/10.1306/74D71910-2B21-11D7-8648000102C1865D
Koehn, D., Rood, M. P., Beaudoin, N., Chung, P., Bons, P. D., & Gomez-Rivas, E. (2016). A new stylolite classification scheme to estimate compaction and local permeability variations. Sedimentary Geology, 346, 60–71. https://doi.org/10.1016/j.sedgeo.2016.10.007
Marfil, R., Caja, M. A., Tsige, M., Al-Aasm, I. S., Martín-Crespo, T., & Salas, R. (2005). Carbonate-cemented stylolites and fractures in the Upper Jurassic limestones of the Eastern Iberian Range, Spain: A record of palaeofluids composition and thermal history. Sedimentary Geology, 178(3–4), 237–257. https://doi.org/10.1016/j.sedgeo.2005.05.010
Al-Sharhan, A.S., Salah, M.G.,. (1997). Tectonic implications of diapirism on hydrocarbon accumulation in the United Arab Emirates. Bulletin of Canadian Petroleum Geology 45, 279-296.
Glennie, K. W., Boeuf, M.G.A., Clarke, M.W.H., Moody-Stuart, M. . (1973). Late cretaceous nappes in Oman mountains and their geologic evolution. American Society of Petroleum Geologist Bulletin 57, 5-27.
Ali, M. Y., Watts, A.B., Searle, M. P. (2013). Seismic stratigraphy and subsidance history of the United Arab Emirates (UAE) rifted margin and overlying forelands basins. Lithospheric Dynamics and Sedimentary Basins: The Arabian Plate and Analogues, 127-144.
Boote, D.R.D., Mou, D., Waite, R.I., Robertson, A.H.F., Searle, M.P., Ries, A.C. (1990). Structural evolution of the Sumeinah Forland, central Oman Mountains. Geological Society Special Publications 49, 397-418.
Searle, M.P. and Ali M.Y. (2009). Structural and tectonic evolution of the Jabal Sumeini Al Ain-Buraimi region, northern Oman and Eastern United arab Emirates. GeoArabia 14, 115-142.
Agard, P., Omrani, J., Jolivet, L., Mouthereau, F.,. (2005). Convergence history across Zagros (Iran): constraints from collisional and earlier deformation. International Journal of Earth Science, 401-419.
Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B., Spakman, W., Monie, P., Meyer, B., Wortel, R.,. (2011). Zagros orogeny: a subduction dominated process. Geological Magazine 148, 692-725.
Imlay, R. (1970). Some Jurassic ammonites from central Saudi Arabia. US Geological Survey Professional Paper, G4BD.
Alsharhan, A. S., & Whittle, G. L. (1995). Sedimentary-diagenetic interpretation and reservoir characteristics of the Middle Jurassic (Araej Formation) in the southern Arabian Gulf. In Petroleum Geology (Vol. 12, Issue 6).
De Matos, J. E. (2002). Sequence stratigraphy and sedimentation of the Araej Formation (Middle Jurassic), UAE: outcrop and subsurface. Abu Dhabi International Petroleum Exhibition & Conference. Abu Dhabi: Society of Petroleum Engineer.
Morad, S., Al-Aasm, I. S., Nader, F. H., Ceriani, A., Gasparrini, M., & Mansurbeg, H. (2012). Impact of diagenesis on the spatial and temporal distribution of reservoir quality in the Jurassic Arab D and C members, offshore Abu Dhabi oilfield, United Arab Emirates. GeoArabia, 17(3), 17–56. https://doi.org/10.2113/geoarabia170317
Grötsch, J., Suwaina, O., Ajlani, G., Taher, A., El-Khassawneh, R., Lokier, S., & Dorp, J. V. (2003). The Arab Formation in central Abu Dhabi: 3-D reservoir architecture and static and dynamic modeling. GeoArabia, 8(1), 47-86.
Embry, A. F., & Klovan, J. E. (1971). A late Devonian reef tract on Northern Banks Island. Bulletin of Canadian Petroleum Geology, 19(4), 730–781. https://doi.org/10.35767/gscpgbull.19.4.730
Lucia, F. J. (1995). Rock-Fabric/Petrophysical Classification of Carbonate Pore Space for Reservoir Characterization1. AAPG Bulletin, 79(9), 1275–1300. https://doi.org/10.1306/7834D4A4-1721-11D7-8645000102C1865D
Fisher, R. A. (1992). Statistical Methods for Research Workers. In N. L. Kotz Samuel and Johnson (Ed.), Breakthroughs in Statistics: Methodology and Distribution (pp. 66–70). Springer New York. https://doi.org/10.1007/978-1-4612-4380-9_6
Gibbons, J.D., & Chakraborti, S. (2020). Nonparametric Statistical Inference (6th ed.). Chapman and Hall/CRC. https://doi.org/10.1201/9781315110479
Drummond, C.N., Sexton, D.N., 1998, Fractal structure of stylolites: Journal of Sedimentary Research, v. 68, p. 8–10.
Oswald, E. J., Mueller III, H. W., & Goff, D. F. (1995). Controls on porosity evolution in Thamama Group carbonate reservoirs in Abu Dhabi, UAE. Society of Petroleum Engineer.
Fabricus, I. D. A. L., & Borre, M. A. I. K. (2007). Stylolites, porosity, depositional texture, and silicates in chalk facies sediments. Ontong Java Plateau – Gorm and Tyra fields, North Sea. Sedimentology, 54(1), 183–205. https://doi.org/https://doi.org/10.1111/j.1365-3091.2006.00828.x
Vandeginste, V., & John, C. M. (2013). Diagenetic implications of stylolitization in pelagic carbonates, Canterbury Basin, offshore New Zealand. Journal of Sedimentary Research, 83(3), 226–240. https://doi.org/10.2110/jsr.2013.18
Oldershaw, A.E., Scoffin, T. P., 1967, The source of ferroan and non-ferroan calcite cements in the Halkin and Wenlock Limestones: Geological Journal, v. 5, p. 309–320.
Peacock, D. C. P., & Azzam, I. N. (2006). Development and scaling relationships of a stylolite population. Journal of Structural Geology, 28(10), 1883–1889. https://doi.org/https://doi.org/10.1016/j.jsg.2006.04.008
DOI: https://doi.org/10.31284/j.jasmet.2025.v6i2.8190
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Mochammad Prahastomi, Sadoon Morad, Aisha Al Suwaidi, Mohammed Ali, Basuki Rahmad, Budi Muljana, Ryandi Adlan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Mailing Address: Journal of Applied Sciences, Management and Engineering Technology - ITATS Institut Teknologi Adhi Tama Surabaya Jl. Arief Rahman Hakim No.100, Surabaya 60117 email: [email protected] Website : https://ejurnal.itats.ac.id/jasmet/index

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.