Computational Fluid Dynamics-Based Performance Evaluation of an Air Cooler for University Classroom Conditioning: A Case Study of Classroom E304, ITERA
Abstract
The advancement of cooling technologies aims to enhance indoor comfort, but conventional air conditioners (AC) raise sustainability concerns due to high energy consumption. This study evaluated the performance of an air cooler in classroom E304, characterized by high occupancy and initial temperatures of 28–30°C with 55–57% relative humidity, exceeding comfort limits per SNI 03-6572-2001. After installing a single air cooler, CFD simulations indicated a temperature reduction to 22.50–23.08°C and relative humidity of 54.89–62.34%, within the comfort range. Model validation demonstrated high accuracy, with RMSE below 1°C and MAPE below 3%, confirming the simulation’s reliability for classroom cooling design. The results demonstrate that air coolers provide an effective and energy-efficient solution for tropical classrooms.
Keywords
Full Text:
PDFReferences
A. Monge-Barrio et al., “Encouraging natural ventilation to improve indoor environmental conditions at schools. Case studies in the north of Spain before and during COVID,” Energy and Buildings, vol. 254, p. 111567, 2021, doi: 10.1016/j.enbuild.2021.111567.
C. Z. Yao, M. N. A. N. Azli, A. Hariri, A. A. M. Damanhuri, and M. S. S. Mustafa, “Preliminary Study on Student’s Performance and Thermal Comfort in Classroom,” ARFMTS, vol. 101, no. 1, pp. 59–72, 2023, doi: 10.37934/arfmts.101.1.5972.
SNI 03-6390-2020, Konservasi Energi Sistem Tata Udara Bangunan Gedung, BSN, 2020.
A. R. Z. Amin, “STUDI PENGHAWAAN ALAMI PADA BANGUNAN SEKOLAH DASAR DI PINGGIRAN SUNGAI MUSI PALEMBANG,” Arsir, vol. 1, no. 2, pp. 86–99, 2017, doi: 10.32502/arsir.v1i2.862.
A. R. Z. Amin, “SIMULASI ALIRAN ANGIN PADA GEDUNG YOSEPH, KAMPUS UNIKA MUSI CHARITAS PALEMBANG,” Jurnal Arsitektur Komposisi, vol. 14, no. 2, pp. 77–84, 2021, doi: 10.24002/jars.v14i2.4608.
A. Y. Wursita, E. Mufida, and M. F. R. Wibowo, “KAJIAN POLA PERGERAKAN UDARA PADA MASSA BANGUNAN SEKOLAH DAN SEKITARNYA SERTA DESAIN BUKAAN RUANG KELAS DENGAN SIMULASI CFD (Studi Kasus Bangunan SD Muhammadiyah Sleman),” Sakapari, vol. 7, no. 1, pp. 65–76, 2024.
M. te Kulve, L. Schlangen, and W. van Marken Lichtenbelt, “Interactions between the perception of light and temperature,” Indoor Air, vol. 28, no. 6, pp. 881–891, 2018, doi: 10.1111/ina.12500.
B. Yunianto, “Pemanfaatan Evaporative Cooling untuk Meningkatkan Kenyamanan Ruang,” ROTASI, vol. 20, no. 1, pp. 29–32, 2018, doi: 10.14710/rotasi.20.1.29-32.
Q. Chen and Z. Zhai, “THE USE OF CFD TOOLS FOR INDOOR ENVIRONMENTAL DESIGN,” in Advanced Building Simulation, pp. 119–140, 2004.
A. Sharma, Introduction to Computational Fluid Dynamics: Development, Application and Analysis. Springer Nature, 2021.
M. A. Mannan and M. F. H. N., “Computational Fluid Dynamics in Coronary and Intra-Cardiac Flow Simulation,” IJRASET, vol. 10, no. 7, pp. 688–693, 2022, doi: 10.22214/ijraset.2022.45280.
S. Maulana, “PEMANFAATAN COMPUTATIONAL FLUID DYNAMICS (CFD) DALAMA STRATEGI PENELITIAN SIMULASI MODEL PADA TEKNOLOGI PENGHAWAAN RUANG,” Educational Building: Jurnal Pendidikan Teknik Bangunan dan Sipil, vol. 2, no. 2, 2016, doi: 10.24114/eb.v2i2.4393.
N. D. G. Drantantiyas, A. N. Ramli, A. Suaif, and L. G. Yehezkiel, “Thermal Analysis of Greenhouse Environment Using Computational Fluid Dynamics (CFD), Case Study in ITERA,” Jurnal IPTEK, vol. 28, no. 2, pp. 153–160, 2024, doi: 10.31284/j.iptek.2024.v28i2.6808.
Sudharto, Prinsip-Prinsip Perpindahan Panas Edisi Ketiga (P. Arko, trans.), Erlangga, Jakarta, 2012.
F. Hafizh et al., “Coefficient Analysis of Shell and Tube Type Heat Exchangers,” BIOMEJ, vol. 4, no. 2, pp. 10–16, 2024, doi: 10.33005/biomej.v4i2.133.
SNI 03-6572-2001, Tata Cara Perancangan Sistem Ventilasi dan Pengkondisian Udara pada Bangunan Gedung, BSN, 2001.
DOI: https://doi.org/10.31284/j.iptek.2025.v29i2.8439
Refbacks
- There are currently no refbacks.









