Extraction and Characterization of Cellulose from Arabica Spent Coffee Grounds

Raymond Hamidy, Hans Rachman, Jaclyn Regina Anggara, Joko Sulistyo, Nyoman Puspa Asri

Abstract


Global coffee production generates significant amounts of spent coffee grounds (SCG), often discarded, creating environmental challenges. Cellulose, a major component of SCG, can be extracted for industrial applications, such as food packaging and bioplastics. This research aims to determine the optimal cellulose purification time for maximizing purity and characterize the physicochemical properties of the extracted cellulose for food industry use. The study investigates the effect of different purification times on cellulose purity. The highest purity (74.40%) was obtained at 180 minutes, with the extracted cellulose showing high crystallinity and favorable properties, such as low moisture content (3.49%), water absorption capacity (6.17%), and bulk density (0.2871 g/cm³). Characterization using SEM revealed the morphology of cellulose crystals, and analysis (Carr’s index: 15.33%, Hausner ratio: 1.1811) confirmed the material’s suitability for biocomposites in food applications. Color analysis (L*: 76.34, C*: 28.52, h*: 16.46, WI: 62.94) also highlighted the material’s potential for use in food formulations. This research provides valuable data for further applications of cellulose derived from SCG.


Keywords


Cellulose extraction; Characterization; Lignocellulose; Spent coffee grounds; Sustainability

Full Text:

PDF

References


A. Triani, D. Rizky Awal Ramadhan, L. Hayfa, R. Moza Zelika, and Z. Nuraziza Sudrajat, “Analisis daya saing ekspor kopi indonesia ke negara amerika serikat dan malaysia selama 5 tahun periode (2016-2020),” Chang. Think J. |, vol. 408, pp. 408–414, 2022.

S. K. Karmee, “A spent coffee grounds based biorefinery for the production of biofuels, biopolymers, antioxidants and biocomposites,” Waste Manag., vol. 72, pp. 240–254, 2018, doi: https://doi.org/10.1016/j.wasman.2017.10.042.

M. A. P. Handoyo and N. P. Asri, “Kajian tentang food loss dan food waste: kondisi, dampak, dan solusinya,” vol. 10, no. 2, pp. 1–23, 2023.

O. Krisbianto, H. Minantyo, B. Kristama, and C. Oktaviana, “Studi persepsi wisatawan terhadap produk makanan lokal ikonis bromo: implikasi bagi pengembangan industri pangan,” J. Indones. Tour. Hosp. Recreat., vol. 6, pp. 171–186, Oct. 2023, doi: 10.17509/jithor.v6i2.57351.

S. Deb Dutta, D. K. Patel, K. Ganguly, and K.-T. Lim, “Isolation and characterization of cellulose nanocrystals from coffee grounds for tissue engineering,” Mater. Lett., vol. 287, p. 129311, 2021, doi: https://doi.org/10.1016/j.matlet.2021.129311.

A. Folino, D. Pangallo, and P. S. Calabrò, “Assessing bioplastics biodegradability by standard and research methods: Current trends and open issues,” J. Environ. Chem. Eng., vol. 11, no. 2, p. 109424, 2023, doi: https://doi.org/10.1016/j.jece.2023.109424.

Isroi, A. Cifriadi, T. Panji, N. A. Wibowo, and K. Syamsu, “Bioplastic production from cellulose of oil palm empty fruit bunch,” IOP Conf. Ser. Earth Environ. Sci., vol. 65, no. 1, p. 12011, 2017, doi: 10.1088/1755-1315/65/1/012011.

S. Collazo-Bigliardi, R. Ortega-Toro, and A. Chiralt Boix, “Isolation and characterisation of microcrystalline cellulose and cellulose nanocrystals from coffee husk and comparative study with rice husk,” Carbohydr. Polym., vol. 191, pp. 205–215, 2018, doi: https://doi.org/10.1016/j.carbpol.2018.03.022.

B. Frost and E. J. Foster, “Isolation of thermally stable cellulose nanocrystals from spent coffee grounds via phosphoric acid hydrolysis,” J. Renew. Mater., vol. 7, pp. 187–203, Jan. 2019, doi: 10.32604/jrm.2020.07940.

J. McNutt and Q. (Sophia) He, “Spent coffee grounds: A review on current utilization,” J. Ind. Eng. Chem., vol. 71, pp. 78–88, 2019, doi: https://doi.org/10.1016/j.jiec.2018.11.054.

A. S. Franca and L. S. Oliveira, “Potential uses of spent coffee grounds in the food industry,” Foods, vol. 11, no. 14. 2022. doi: 10.3390/foods11142064.

S.-J. Park et al., “CHARMM-GUI Glycan Modeler for modeling and simulation of carbohydrates and glycoconjugates.,” Glycobiology, vol. 29, no. 4, pp. 320–331, Apr. 2019, doi: 10.1093/glycob/cwz003.

D. C. Petrescu, I. Vermeir, and R. M. Petrescu-Mag, “Consumer understanding of food quality, healthiness, and environmental impact: A cross-national perspective,” Int. J. Environ. Res. Public Health, vol. 17, no. 1, 2020, doi: 10.3390/ijerph17010169.

B. Liu et al., “Application and prospect of organic acid pretreatment in lignocellulosic biomass separation: A review,” Int. J. Biol. Macromol., vol. 222, pp. 1400–1413, 2022, doi: https://doi.org/10.1016/j.ijbiomac.2022.09.270.

A. Shettiwar et al., “A comprehensive review of the biomaterial-based multifunctional nanocarriers for therapeutic applications in breast cancer,” J. Drug Deliv. Sci. Technol., vol. 89, p. 104990, 2023, doi: https://doi.org/10.1016/j.jddst.2023.104990.

Y. SEKİ, “Isolation and characterization of cellulose from spent ground coffee (Coffea arabica L.): A comparative study,” Waste Manag., vol. 193, pp. 54–61, 2025, doi: https://doi.org/10.1016/j.wasman.2024.11.048.

N. Sayakulu and S. Soloi, “The effect of sodium hydroxide (NaOH) concentration on oil palm empty fruit bunch (OPEFB) cellulose yield,” J. Phys. Conf. Ser., vol. 2314, p. 12017, Aug. 2022, doi: 10.1088/1742-6596/2314/1/012017.

M. H. Tanis, O. Wallberg, M. Galbe, and B. Al-Rudainy, “Lignin Extraction by Using Two-Step Fractionation: A Review,” Jan. 01, 2024, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/molecules29010098.

N. Amrillah, F. Hanum, A. Rahayu, A. Hapsari, and Nuraini, “Optimization and Characterization Cellulose Content Of Cocoa Pod Husk From Cocoa Fermentation Center In Gunung Kidul Regency, Indonesia Through The Extraction Process,” Sains Nat. J. Biol. Chem., vol. 14, pp. 81–90, Apr. 2024, doi: 10.31938/jsn.v14i2.703.

Y. R. Herrero, K. L. Camas, and A. Ullah, “Chapter 4 - Characterization of biobased materials,” S. Ahmed and B. T.-A. A. of B. M. Annu, Eds. Elsevier, 2023, pp. 111–143. doi: https://doi.org/10.1016/B978-0-323-91677-6.00005-2.

H. Kalman, “Bulk densities and flowability of non-spherical particles with mono-sized and particle size distributions,” Powder Technol., vol. 401, p. 117305, 2022, doi: https://doi.org/10.1016/j.powtec.2022.117305.

S. H. Budnimath et al., “Physical, reconstitution and phenolic properties of instant drink mix prepared with Moringa oleifera leaf, raw banana and whey protein concentrate,” Meas. Food, vol. 11, p. 100108, 2023, doi: https://doi.org/10.1016/j.meafoo.2023.100108.

B. Alfred and S. Heidi, Benson’s microbiological applications, laboratory manual in general microbiology, vol. 13th Editi, no. April. 2015.

L. Boyano-Orozco, T. Gallardo-Velázquez, O. G. Meza-Márquez, and G. Osorio-Revilla, “Microencapsulation of rambutan peel extract by spray drying,” Foods, vol. 9, no. 7. 2020. doi: 10.3390/foods9070899.

F. Manguldar et al., “Vegan and gluten-free granola bar production with pumpkin,” Eur. Food Sci. Eng., vol. 3, Dec. 2022, doi: 10.55147/efse.1166320.

M. Zwawi, “A review on natural fiber bio-composites, surface modifications and applications,” Molecules, vol. 26, no. 2. 2021. doi: 10.3390/molecules26020404.

O. Sari, Y. Rahmawati, F. Taufany, Y.-C. Chiu, and S. Nurkhamidah, “The effects of NaClO2 and H2O2 as bleaching agents in the synthesis of cellulose acetate from oil palm empty fruit bunch,” ASEAN Eng. J., vol. 14, pp. 137–142, Aug. 2024, doi: 10.11113/aej.v14.21327.




DOI: https://doi.org/10.31284/j.iptek.2025.v29i1.7815

Refbacks

  • There are currently no refbacks.


Indexed by:
SINTA logo Google Scholar logo Dimensions logo GARUDA logo Crossref logo Worldcat logo Base logo Scilit logo