Making Biochar from Coffee Grounds and Powder Waste Through the Torrefaction Process and Adding NaHCO3

Muhammad Faturrahman, Zulnazri Zulnazri, Rozanna Dewi

Abstract


This research examines biochar manufacture from waste coffee grounds and wood dust using the dry torrefaction method with a temperature ratio of  250°C  and 300°C. The adhesive used at 5% shows a calorific value of 6,786 cal, volatile matter 81.82%adb, water content 1.79%ar, and ash content 9.52%adb. Meanwhile, the adhesive at 7% obtained a calorific value of 6,264 cal, water content of 3.9%ar, volatile matter 81.82%ab, and ash content of 14.29%adb. The results of the functional group analysis with FT-IR of the two torrefaction biobriquettes showed the presence of CH and OH groups originating from cellulose compounds, indicating that the carbon quality in the torrefaction charcoal is still high. Activated charcoal products produced through torrefaction are briquettes using tapioca flour adhesive to be molded as bio briquettes, and the results are tough and not easily broken.


Keywords


Aquades; Biobriquette; Coffee; Sawdust; Torrefaction

Full Text:

PDF

References


Chen, W. H., Du, J. T., Lee, K. T., Ong, H. C., Park, Y. K., & Huang, C. C. (2021). Pore volume upgrade of biochar from spent coffee grounds by sodium bicarbonate during torrefaction. Chemosphere, 275, 129999.

IEA, G. E. (2019). CO2 Status Report 2018. International Energy Agency, Paris, 562..

Chih, Y. K., Chen, W. H., & Tran, K. Q. (2020). Hydrogen production from methanol partial oxidation through the catalyst prepared using torrefaction liquid products. Fuel, 279, 118419.

Janissen, B., & Huynh, T. (2018). Chemical composition and value-adding applications of coffee industry by-products: A review. Resources, Conservation and recycling, 128, 110-117.

Tongcumpou, C., Usapein, P., & Tuntiwiwattanapun, N. (2019). Complete utilization of wet spent coffee grounds waste as a novel feedstock for antioxidant, biodiesel, and bio-char production. Industrial Crops and Products, 138, 111484.

Yansen, A., Satya, D. I., Doaly, T. D. L., & Situmorang, D. M. (2021, August). Limbah Ampas Kopi Sebagai Alternatif Bahan Bakar Industri Untuk Menggantikan Penggunaan Batubara. In Proceeding Technology of Renewable Energy and Development Conference (Vol. 1).

Saptari, S. A., Sanjaya, E., & Ghufran, A. I. (2016). Pengujian Tingkat Kekerasan Bahan Komposit Serbuk Kayu dengan Matrik Resin Epoksi. Jurnal Al-Fiziya, 9(2), 74-80.

Experimental investigations on combustion characteristics of fuel briquettes made from vegetable market waste and sawdust.

Lestari, M. D., Sudarmin, S., & Harjono, H. (2018). Ekstraksi selulosa dari limbah pengolahan agar menggunakan larutan NaOH sebagai prekursor bioetanol. Indonesian Journal of Chemical Science, 7(3), 236-241.

Paradkar, M. M., & Irudayaraj, J. (2002). Rapid determination of caffeine content in soft drinks using FTIR–ATR spectroscopy. Food Chemistry, 78(2), 261-266.

Chrysafi, I., Ainali, N. M., & Bikiaris, D. N. (2021). Thermal degradation mechanism and decomposition kinetic studies of poly (Lactic acid) and its copolymers with poly (hexylene succinate). Polymers, 13(9), 1365.

Arora, G., Sabran, N. S., Liew, C. W., Ng, C. Y., Low, F. W., Singh, P. K., & Jun, H. K. (2024). Characterization of green-synthesized carbon quantum dots from spent coffee grounds for EDLC electrode applications. Chemical Physics Impact, 9, 100767.

Setiabudi, A., Hardian, R., & Mudzakir, A. (2012). Karakterisasi Material. Prinsip dan Aplikasina dalam Penelitian Kimia.

Ardianti, A. D., Yuwita, P. E., & Fathoni, M. (2022). Analisis Morfologi dan Struktur Karbon Aktif Kulit Salak Wedi dengan Aktivator Bertingkat. JIIF (Jurnal Ilmu dan Inovasi Fisika), 6(1), 53-60.




DOI: https://doi.org/10.31284/j.iptek.2025.v29i1.6666

Refbacks

  • There are currently no refbacks.


Indexed by:
SINTA logo Google Scholar logo Dimensions logo GARUDA logo Crossref logo Worldcat logo Base logo Scilit logo