HEDONIC TEST AND HEDONIC QUALITY TEST OF KOMBUCHA FROM VARIOUS TYPES OF INDONESIAN HERBS

Yunita Khilyatun Nisak, Maylina Ilhami Khurniyati, Syarifa Ramadhani Nurbaya, Endik Deni Nugroho

Abstract


Since the COVID-19 pandemic, people have learned the importance of consuming vitamins or supplements that boost the immune system. In fact, compounds that enhance the immune system, usually called immunomodulators, can be obtained easily around us, one of which is from TOGA (Family Medicinal Plants). Even though TOGA has been known for a long time, the utilization of TOGA still needs to be improved, even though the bioactive compounds in TOGA can be utilized, one of which is by fermenting it into kombucha. The method used in this study is quantitative and descriptive. The results of this study indicate that based on pH analysis, kombucha had a pH between 3.4 and 3.89 before fermentation. Meanwhile, after fermentation, the kombucha pH dropped to 2.89 – 3.08. The results of the hedonic test showed that curcuma kombucha had the highest average value in terms of aroma, colour, flavour, sensation of soda and overall preference. The results of the hedonic quality test showed that the preferred TOGA kombucha had a slightly pungent aroma, pale yellow colour, quite sour flavour and quite pronounced soda sensation.


Keywords


Hedonic; hedonic quality; kombucha; TOGA

Full Text:

PDF

References


Satuan Tugas Penanganan Covid-19, “Situasi Virus Corona.” https://data.covid19.go.id/public/index.html (accessed Oct. 23, 2022).

M. Janssen, B. P. I. Chang, H. Hristov, I. Pravst, A. Profeta, and J. Millard, “Changes in Food Consumption During the COVID-19 Pandemic: Analysis of Consumer Survey Data From the First Lockdown Period in Denmark, Germany, and Slovenia,” Front. Nutr., vol. 8, Mar. 2021, doi: 10.3389/fnut.2021.635859.

Hys, “Identification of the reasons why individual consumers purchase dietary supplements,” Perspect. Consum. Behav., pp. 193–209, 2020.

R. Arlauskas, D. Austys, and R. Stukas, “COVID-19 Pandemic and Consumption of Dietary Supplements among Adult Residents of Lithuania,” Int. J. Environ. Res. Public Health, vol. 19, no. 15, p. 9591, Aug. 2022, doi: 10.3390/ijerph19159591.

S. Mindarti and N. Bebet, Tanaman Obat Keluarga (Toga). Jawa Barat: Balai Pengkajian Teknologi Pertanian (BPTN), 2015.

D. Kaushik, “Current pharmacological and phytochemical studies of the plant Alpinia galanga,” J. Chinese Integr. Med., vol. 9, no. 10, pp. 1061–1065, Oct. 2011, doi: 10.3736/jcim20111004.

H. Silva and R. Bárbara, “Exploring the Anti-Hypertensive Potential of Lemongrass—A Comprehensive Review,” Biology (Basel)., vol. 11, no. 10, p. 1382, Sep. 2022, doi: 10.3390/biology11101382.

S. Hadi, A. N. Artanti, Y. Rinanto, and D. S. C. Wahyuni, “Curcuminoid content of Curcuma longa L. and Curcuma xanthorrhiza rhizome based on drying method with NMR and HPLC-UVD,” IOP Conf. Ser. Mater. Sci. Eng., vol. 349, p. 012058, Apr. 2018, doi: 10.1088/1757-899X/349/1/012058.

R. B. Semwal, D. K. Semwal, S. Combrinck, and A. M. Viljoen, “Gingerols and shogaols: Important nutraceutical principles from ginger,” Phytochemistry, vol. 117, pp. 554–568, Sep. 2015, doi: 10.1016/j.phytochem.2015.07.012.

A. Grigore, “Plant Phenolic Compounds as Immunomodulatory Agents,” in Phenolic Compounds - Biological Activity, InTech, 2017. doi: 10.5772/66112.

C. Yong, Y. Yoon, S. Yoo, H, and S. Oh, “Effect of Lactobacillus Fermentation on the Anti-Inflammatory Potential of Turmeric.,” J. Microbiol. Biotechnol., vol. 29, no. 10, pp. 1561–1569, 2019.

E. Zubaidah, Y. K. Nisak, S. A. Wijayanti, and R. A. Christianty, “Characteristic of microbiological, chemical, and antibacterial activity of turmeric (Curcuma longa) kombucha,” IOP Conf. Ser. Earth Environ. Sci., vol. 924, no. 1, p. 012080, Nov. 2021, doi: 10.1088/1755-1315/924/1/012080.

E. Zubaidah, F. J. Dewantari, F. R. Novitasari, I. Srianta, and P. J. Blanc, “Potential of snake fruit (Salacca zalacca (Gaerth.) Voss) for the development of a beverage through fermentation with the Kombucha consortium,” Biocatal. Agric. Biotechnol., vol. 13, no. December 2017, pp. 198–203, 2018, doi: 10.1016/j.bcab.2017.12.012.

E. Zubaidah, Y. K. Nisak, I. Susanti, T. D. Widyaningsih, I. Srianta, and I. Tewfik, “Turmeric Kombucha as effective immunomodulator in Salmonella typhi-infected experimental animals,” Biocatal. Agric. Biotechnol., vol. 37, p. 102181, Oct. 2021, doi: 10.1016/j.bcab.2021.102181.

S. Salafzoon, H. Mahmoodzadeh Hosseini, and R. Halabian, “Evaluation of the antioxidant impact of ginger-based kombucha on the murine breast cancer model,” J. Complement. Integr. Med., vol. 15, no. 1, Feb. 2018, doi: 10.1515/jcim-2017-0071.

I. Alif et al., “Immunopotentiation of galangal (Alpinia galanga L.) when combined with T-cells against metastatic triple-negative breast cancer, MDA-MB 231,” J. Appl. Pharm. Sci., Nov. 2021, doi: 10.7324/JAPS.2021.1101107.

P. A. I. Setiyowati, R. Solekha, S. B. S. M. K. Negara, and R. Rosalina, “Immunomodulator Effect of Lemongrass Extract (Cymbopogon nardus L.) to Increase Immune Cells as a Precaution Against SARS-CoV-2,” Biomol. Heal. Sci. J., vol. 4, no. 2, p. 73, Oct. 2021, doi: 10.20473/bhsj.v4i2.26619.

M. Aljobair, “Chemical composition, antimicrobial properties, and antioxidant activity of galangal rhizome,” Food Sci. Technol., vol. 42, 2022, doi: 10.1590/fst.45622.

M. Mukarram et al., “Lemongrass Essential Oil Components with Antimicrobial and Anticancer Activities,” Antioxidants, vol. 11, no. 1, p. 20, Dec. 2021, doi: 10.3390/antiox11010020.

S. Burapan, M. Kim, Y. Paisooksantivatana, B. E. Eser, and J. Han, “Thai Curcuma Species: Antioxidant and Bioactive Compounds,” Foods, vol. 9, no. 9, p. 1219, Sep. 2020, doi: 10.3390/foods9091219.

Q.-Q. Mao et al., “Bioactive Compounds and Bioactivities of Ginger (Zingiber officinale Roscoe),” Foods, vol. 8, no. 6, p. 185, May 2019, doi: 10.3390/foods8060185.

E. Daryono, A. Pursitta, and Isnaini, “Ekstraksi Minyak Atsiri Pada Tanaman Kemangi dengan Pelarut N-Heksana,” J. Tek. Kim., vol. 9, no. 1, pp. 1–7, 2014.

N. S. Dosoky and W. N. Setzer, “Chemical composition and biological activities of essential oils of curcuma species,” Nutrients, vol. 10, no. 9, pp. 10–17, 2018, doi: 10.3390/nu10091196.

K. Khanna et al., “Herbal immune-boosters: Substantial warriors of pandemic Covid-19 battle,” Phytomedicine, vol. 85, p. 153361, May 2021, doi: 10.1016/j.phymed.2020.153361.

R. Jayabalan, R. V. Malbaša, E. S. Lončar, J. S. Vitas, and M. Sathishkumar, “A review on kombucha tea-microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus,” Compr. Rev. Food Sci. Food Saf., vol. 13, no. 4, pp. 538–550, 2014, doi: 10.1111/1541-4337.12073.

B. M. Bortolomedi, C. S. Paglarini, and F. C. A. Brod, “Bioactive compounds in kombucha: A review of substrate effect and fermentation conditions,” Food Chem., vol. 385, p. 132719, Aug. 2022, doi: 10.1016/j.foodchem.2022.132719.

R. Mei, M. Zhou, L. Xu, Y. Zhang, and X. Su, “Characterization of a pH-tolerant strain Cobetia sp. SASS1 and its phenol degradation performance under salinity condition. 10, 2034.,” Front. Microbiol., vol. 10, no. 2034, 2019.

F. Filippis, A. Troise, P. Vitaglione, and D. Ercolini, “Different temperatures select distinctive acetic acid bacteria species and promotes organic acids production during kombucha tea fermentation.,” Food Microbiol, vol. 73, pp. 11–16, 2018.

A. K. Paul et al., “Are Fermented Foods Effective against Inflammatory Diseases?,” Int. J. Environ. Res. Public Health, vol. 20, no. 3, p. 2481, Jan. 2023, doi: 10.3390/ijerph20032481.

N. Afifah, “Analisis Kondisi Dan Potensi Lama Fermentasi Medium Kombucha (Teh, Kopi, Rosela) dalam Menghambat Bakteri Patogen (Vibrio Cholerae dan Bacillus Cereus),” Universitas Islam Negeri Maulana Malik Inrahim, 2010.

H. Winarsi, “Fermentasi Bakteri Asam Laktat Meningkatkan Kandungan Fenolik dan Serat Yogurt Susu Kecambah Kacang Merah (Phaseolus vulgaris L.), Minuman Fungsional untuk Obesitas.,” J. Gizi dan Pangan Soedirman, vol. 3, no. 1, pp. 64–75, 2019.

K. Bambang, Pedoman Uji Inderawi Bahan Pangan. Yogyakarta: Pusat Antara Universitas Pangan dan Gizi, Universitas Gajah Mada., 2001.

Soekarto, “Pangan Semi Basah, Keamanan dan Potensinya dalam Perbaikan Gizi Masyarakat,” 2000.

E. Zubaidah, S. Yurista, and N. R. Rahmadani, “Characteristic of physical, chemical, and microbiological kombucha from various varieties of apples.,” IOP Conf. Ser. Earth Environ. Sci., vol. 131, no. 1, 2018.

Winarno, Kimia Pangan dan Gizi. Jakarta: PT. Gramedia Pustaka Utama, 2002.

S. Fitriani, Promosi Kesehatan. Ed 1. Yogyakarta: Grara Ilmu, 2011.

B. Kocaadam and N. Şanlier, “Curcumin, an active component of turmeric ( Curcuma longa ), and its effects on health,” Crit. Rev. Food Sci. Nutr., vol. 57, no. 13, pp. 2889–2895, Sep. 2017, doi:

1080/10408398.2015.1077195.

R. Jayabalan, S. Marimuthu, and K. Swaminathan, “Changes in content of organic acids and tea polyphenols during kombucha tea fermentation.,” Food Chem., vol. 102, no. 1, pp. 392–398, 2007.

J. M. Leal, L. V. Suárez, R. Jayabalan, J. H. Oros, and A. Escalante-Aburto, “A review on health benefits of kombucha nutritional compounds and metabolites,” CYTA - J. Food, vol. 16, no. 1, pp. 390–399, 2018, doi: 10.1080/19476337.2017.1410499.

Y. Hilal and U. Engelhardt, “Characterisation of white tea-comparison to green tea and black tea.,” J. verbr. Leb., vol. 2, pp. 414–421, 2007.

E. Zubaidah, S. Yurista, and N. R. Rahmadani, “Characteristic of physical, chemical, and microbiological kombucha from various varieties of apples,” IOP Conf. Ser. Earth Environ. Sci., vol. 131, no. 1, 2018, doi: 10.1088/1755-1315/131/1/012040.




DOI: https://doi.org/10.31284/j.iptek.2023.v27i2.5061

Refbacks

  • There are currently no refbacks.