Analisis Sentimen Cuitan X terhadap Pendaki Asing Gunung Rinjani Menggunakan Algoritma SVM dan Random Forest

Desy Candra Novitasari, Rahmi Rizkiana Putri

Abstract

Social media platforms have become significant sources of public opinion regarding various issues, including tourism activities. This study analyzes public sentiment towards foreign climbers on Mount Rinjani through X (Twitter) social media posts using Support Vector Machine (SVM) and Random Forest algorithms. Data collection employed web scraping techniques with six relevant keywords, resulting in 4,777 unique tweets after cleaning and duplicate removal. The lexicon-based labeling approach revealed an imbalanced distribution with 63.58% negative sentiment, 18.8% positive sentiment, and 17.63% neutral sentiment. To address class imbalance, Synthetic Minority Oversampling Technique (SMOTE) was applied, creating a balanced dataset of 9,111 samples. Text preprocessing included case folding, normalization, tokenization, stopword removal, and stemming using Indonesian language tools. Feature extraction utilized TF-IDF vectorization with parameters optimized for Indonesian text analysis. The dataset was split into 70% training, 15% validation, and 15% testing using stratified sampling. Evaluation results demonstrated that SVM achieved superior performance with 95.7% accuracy, 96% precision, 95.7% recall, and 95.7% F1-score, while Random Forest achieved 94.4% accuracy, 94.4% precision, 94.4% recall, and 94.4% F1-score. The dominance of negative sentiment indicates public concerns regarding foreign climbing activities that require stakeholder attention. This research contributes to sentiment analysis methodology for Indonesian social media text and provides practical insights for sustainable tourism management in Mount Rinjani National Park

Full Text:

PDF

References

C. N. Adela, S. Karnila, S. Sutedi, and M. Agarina, “Analisis Ulasan Pengguna Aplikasi Seabank Dengan Support Vector Machine Dan Naïve Bayes,” *Jurnal Tekno Kompak*, vol. 18, no. 2, p. 441, 2024. [Online]. Available: https://doi.org/10.33365/jtk.v18i2.4156

A. M. Anjani, A. A. Chamid, and A. C. Murti, “Analisis Sentimen Kaum LGBT pada Media Sosial Twitter Menggunakan Algoritma Naïve Bayes,” *Journal Unisnu*, vol. 1, no. 2, 2022. [Online]. Available: https://journal.unisnu.ac.id/JTINFO/article/view/259

M. R. Adrian, M. P. Putra, M. H. Rafialdy, and N. A. Rakhmawati, “Perbandingan Metode Klasifikasi Random Forest dan SVM Pada Analisis Sentimen PSBB,” *Jurnal Informatika Upgris*, vol. 7, no. 1, 2021. [Online]. Available: https://doi.org/10.26877/JIU.V7I1.7099

D. R. Alghifari, M. Edi, and L. Firmansyah, “Implementasi Bidirectional LSTM untuk Analisis Sentimen Terhadap Layanan Grab Indonesia,” *Jurnal Manajemen Informatika (JAMIKA)*, vol. 12, no. 2, pp. 89–99, 2022. [Online]. Available: https://doi.org/10.34010/jamika.v12i2.7764

P. A. Allorerung and R. Rismayani, “Sentiment Analysis on WeTV App Reviews on Google Play Store Using NBC and SVM Algorithms,” *SISTEMASI*, vol. 12, no. 2, pp. 2540–9719, 2023. [Online]. Available: https://sistemasi.ftik.unisi.ac.id/index.php/stmsi/article/view/2518

H. Bustomy, “Analisa sentimen data text preprocessing pada data mining dengan menggunakan machine learning,” *JBASE: Journal UBM*, vol. 4, no. 2, pp. 16–22, 2021. [Online]. Available: https://doi.org/10.30813/jbase.v4i2.3000

A. Dayani, G. N. KomtekInfo, and U. 2024, “Analisis Sentimen Terhadap Opini Publik pada Sosial Media Twitter Menggunakan Metode Support Vector Machine,” *Jkomtekinfo.Org*, 2024. [Online]. Available: https://jkomtekinfo.org/ojs/index.php/komtekinfo/article/view/439

S. Hadianti *et al.*, “Analisis Sentimen COVID-19 di Twitter Menggunakan Metode Naïve Bayes dan SVM,” *Jurnal Teknologi Informasi*, vol. 6, no. 1, pp. 58–63, 2022.

M. F. Y. Herjanto and C. Carudin, “Analisis Sentimen Ulasan Pengguna Aplikasi Sirekap Pada Play Store Menggunakan Algoritma Random Forest Classifier,” *Jurnal Informatika dan Teknik Elektro Terapan*, vol. 12, no. 2, pp. 1204–1210, 2024. [Online]. Available: https://doi.org/10.23960/jitet.v12i2.4192

R. Himawan and E. Eliyani, “Perbandingan Akurasi Analisis Sentimen Tweet terhadap Pemerintah Provinsi DKI Jakarta di Masa Pandemi,” *JEPIN (Jurnal Edukasi dan Penelitian Informatika)*, 2021. [Online]. Available: https://jurnal.untan.ac.id/index.php/jepin/article/view/41728

I. Idris, Y. Mustofa, and I. A. Salihi, “Analisis Sentimen Terhadap Penggunaan Aplikasi Shopee Menggunakan Algoritma Support Vector Machine (SVM),” *Jambura Journal of Electrical and Electronics Engineering*, vol. 5, no. 1, 2023. [Online]. Available: https://doi.org/10.1177/0165551510388123

N. N. I. W. Astuti, I. M. A. D. Suarjaya, and I. M. S. Raharja, “Analisis Sentimen Masyarakat Terhadap Pelaksanaan Layanan Kesehatan Selama Masa Pandemi di Indonesia Menggunakan Teknologi Big Data,” *Jurnal Manajemen dan Informatika*, vol. 3, no. 2, 2022.

E. R. Indriyani, P. Paradise, and M. Wibowo, “Perbandingan Metode Naïve Bayes dan Support Vector Machine Untuk Analisis Sentimen Terhadap Vaksin Astrazeneca di Twitter,” *Jurnal Media Informatika Budidarma*, vol. 6, no. 3, p. 1545, 2022. [Online]. Available: https://doi.org/10.30865/mib.v6i3.4220

A. M. Kafiar and S. Supatman, “Analisis Sentimen Netizen Terhadap Isu Pembabatan Hutan Adat Papua Melalui Tagar #AllEyesOnPapua Menggunakan Algoritma Support Vector Machine,” *JATI (Jurnal Mahasiswa Teknik Informatika)*, vol. 8, no. 4, pp. 8129–8135, 2024. [Online]. Available: https://doi.org/10.36040/JATI.V8I4.10672

D. R. Manalu, M. C. L. Tobing, and M. Yohanna, “Analisis Sentimen Twitter Terhadap Wacana Penundaan Pemilu Dengan Metode Support Vector Machine,” *METHOMIKA Jurnal Manajemen Informatika dan Komputerisasi Akuntansi*, vol. 6, no. 6, pp. 149–156, 2022. [Online]. Available: https://doi.org/10.46880/jmika.vol6no2.pp149-156

R. Mursyid, “Perbandingan Akurasi Metode Analisis Sentimen Untuk Evaluasi Opini Pengguna Pada Platform Media Sosial (Studi Kasus: Twitter),” *JINACS*, vol. 6, 2024. [Online]. Available: https://ejournal.unesa.ac.id/index.php/jinacs/article/download/61322/46931

A. Muzayyanah, R. E. Pawening, and Z. Arifin, “Analisis Sentimen pada Ulasan Aplikasi Ehadrah di Google Play Store Menggunakan Support Vector Machine (SVM),” *IDEALIS: Indonesia Journal Information System*, vol. 7, no. 2, pp. 258–266, 2024. [Online]. Available: https://jom.fti.budiluhur.ac.id/IDEALIS/article/view/3250

D. Purnamasari, M. A. K. Anshary, and R. R. Rianto, “Particle Swarm Optimization dan Genetic Algorithm untuk Analisis Sentimen Pemekaran Papua di Twitter Berbasis Support Vector Machine,” *AITI*, vol. 20, pp. 177–190, Aug. 2023. [Online]. Available: https://ejournal.uksw.edu/aiti/article/view/7747

A. Saepudin, R. Aryanti, E. Fitriani, R. Royadi, and D. Ardiansyah, “Analisis Sentimen Pemanfaatan Artificial Intelligence di Dunia Pendidikan Menggunakan SVM Berbasis Particle Swarm Optimization,” *Computer Science (CO-SCIENCE)*, vol. 4, no. 1, pp. 71–79, 2024. [Online]. Available: https://doi.org/10.31294/coscience.v4i1.2921

H. Sujadi, “Analisis Sentimen Pengguna Media Sosial Twitter Terhadap Wabah Covid-19 Dengan Metode Naive Bayes Classifier Dan Support Vector Machine,” *INFOTECH Journal*, vol. 8, no. 1, pp. 22–27, 2022. [Online]. Available: https://doi.org/10.31949/infotech.v8i1.1883

I. Syahrohim, S. D. Saputra, R. W. Saputra, V. H. Pranatawijaya, and R. Priskila, “Perbandingan Analisis Sentimen Setelah Pilpres 2024 di Twitter Menggunakan Algoritma Machine Learning,” *Jurnal Informatika dan Teknik Elektro Terapan*, vol. 12, no. 2, pp. 2830–7062, 2024. [Online]. Available: https://doi.org/10.23960/JITET.V12I2.4249

R. Vindua and A. U. Zailani, “Analisis Sentimen Pemilu Indonesia Tahun 2024 Dari Media Sosial Twitter Menggunakan Python,” *JURIKOM (Jurnal Riset Komputer)*, vol. 10, no. 2, p. 479, 2023. [Online]. Available: https://doi.org/10.30865/JURIKOM.V10I2.5945

D. M. Ziegler, N. Stiennon, J. Wu, T. B. Brown, D. A. Paul, G. C. Radford, and I. OpenAI, “Fine-tuning Language Models from Human Preferences,” *arXiv preprint arXiv:1909.08593*, 2020. [Online]. Available: https://arxiv.org/abs/1909.08593

Refbacks

  • There are currently no refbacks.