Klasifikasi Genre Buku Berbasis Judul dan Sinopsis Menggunakan Metode Support Vector Machine
Abstract
Full Text:
PDFReferences
Amalia, D. H., & Yustanti, W. (2021). Klasifikasi Buku Menggunakan Metode Support Vector Machine pada Digital Library. Journal of Informatics and Computer Science (JINACS), 3(01). https://doi.org/10.26740/jinacs.v3n01.p55-61
Bamman, D., & Smith, N. A. (2013). New Alignment Methods for Discriminative Book Summarization. http://arxiv.org/abs/1305.1319
Bernardes, R. (2024). Machine learning ‐ Basic principles. Acta Ophthalmologica, 102(S279). https://doi.org/10.1111/aos.16281
Boateng, E. Y., Otoo, J., & Abaye, D. A. (2020). Basic Tenets of Classification Algorithms K-Nearest-Neighbor, Support Vector Machine, Random Forest and Neural Network: A Review. Journal of Data Analysis and Information Processing, 08(04). https://doi.org/10.4236/jdaip.2020.84020
Cahyani, S. N., & Saraswati, G. W. (2023). Implementation of Support Vector Machine Method in Classifying School Library Books with Combination of TF-IDF and Word2VEC. Jurnal Teknik Informatika (Jutif), 4(6). https://doi.org/10.52436/1.jutif.2023.4.6.1536
Cervantes, J., Garcia-Lamont, F., Rodríguez-Mazahua, L., & Lopez, A. (2020). A comprehensive survey on support vector machine classification: Applications, challenges and trends. Neurocomputing, 408, 189–215. https://doi.org/10.1016/j.neucom.2019.10.118
Daniel, J., & Martin, J. H. (2023). Chapter 5 - Speech and Language Processing. Speech and Language Processing.
Deng, N., Tian, Y., & Zhang, C. (2012). Support vector machines: Optimization based theory, algorithms, and extensions. In Support Vector Machines: Optimization Based Theory, Algorithms, and Extensions. https://doi.org/10.1201/b14297
Injadat, M. N., Moubayed, A., Nassif, A. B., & Shami, A. (2021). Machine learning towards intelligent systems: applications, challenges, and opportunities. Artificial Intelligence Review, 54(5). https://doi.org/10.1007/s10462-020-09948-w
Jalilifard, A., Caridá, V. F., Mansano, A. F., Cristo, R. S., & da Fonseca, F. P. C. (2021). Semantic Sensitive TF-IDF to Determine Word Relevance in Documents. Lecture Notes in Electrical Engineering, 736 LNEE. https://doi.org/10.1007/978-981-33-6987-0_27
Leli, N., Rakhmawati, F., & Widyasari, R. (2023). Penerapan Metode Support Vector Machine (SVM) untuk Klasifikasi Uang Kuliah Tunggal di Universitas Islam Negeri Sumatera. Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika Dan Statistika, 4(2). https://doi.org/10.46306/lb.v4i2.354
Monika, I. P., & Furqon, M. T. (2018). Penerapan Metode Support Vector Machine (SVM) Pada Klasifikasi Penyimpangan Tumbuh Kembang Anak. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 2(10).
Nguyen, T. T. S., & Do, P. M. T. (2020). Classification optimization for training a large dataset with Naïve Bayes. Journal of Combinatorial Optimization, 40(1). https://doi.org/10.1007/s10878-020-00578-0
Sanderson, M. (2010). Christopher D. Manning, Prabhakar Raghavan, Hinrich Schütze, Introduction to Information Retrieval, Cambridge University Press. 2008. ISBN-13 978-0-521-86571-5, xxi + 482 pages. Natural Language Engineering, 16(1). https://doi.org/10.1017/s1351324909005129
Sulistilawati, I., Musyafa, A., Zain, R. M., Informatika, T., Pamulang, U., & Selatan, T. (2024). Penerapan Data Mining Dalam Menentukan Pelajaran yang Diminati Dengan Metode Support Vector Mechine (SVM) (Vol. 2, Issue 1).
Wang, Q. (2022). Support Vector Machine Algorithm in Machine Learning. 2022 IEEE International Conference on Artificial Intelligence and Computer Applications, ICAICA 2022. https://doi.org/10.1109/ICAICA54878.2022.9844516
Winiarti, S., Widayanti, D., Ahdiani, U., & Ismail, T. (2022). Klasifikasi Jenis Buku Berdasarkan Cover dan Judul Buku Menggunakan Metode Support Vector Machine dan Cosine Similarity. Sainteks, 19(1). https://doi.org/10.30595/sainteks.v19i1.13423
Refbacks
- There are currently no refbacks.