Ant Colony Optimization Pada Klasifikasi Mangga Gadung Dan Mangga Manalagi

Febri Liantoni, Luky Agus Hermanto


Examples of types of mango that can be used for food is mango gadung and mango manalagi. In this study taken the topic of the classification of mango gadung and mango manalagi. The process of introduction of mango leaves of gadung and mango manalagi is done based on image edge detection of mango leaf structure. In the process of edge detection is used ant colony optimization (ACO) method that replaces conventional detection. Application of ant colony optimization method successfully optimizes the result of edge detection of a mango leaf bone structure. This is demonstrated by the detection of bony edges of leaf bone structure and more detail than using Roberts or Sobel edge detection. The result of classification test using k-nearest neighbor method got 67,5% accuracy.

Full Text:



Jabal, F. Mohamad, S. Suhardi, S. Salehuddin, and Illiasak, “Leaf Features Extraction and Recognition Approaches to Classify Plant,” Journal of Computer Science, vol. 9, pp. 1295– 1304, 2013.

H. Fu and Z. Chi, “Combined thresholding and neural network approach for vein pattern extraction from leaf images,” Image Signal Process. IEEE, vol. 153, no. 6, 2006.

R. Gonzales and R. Wood, Digital Image Processing. Addison Wesley, 1992.

V. Om P, Hanmandlu, M. Sultania, and A. K. Dhruv, “A Novel Fuzzy Ant System For Edge Detection,” IEEE/ACIS International Conference on Computer and Information Science, pp. 228–233, 2010.

G. Charu and G. Sunanda, “Edge Detection of an Image based on Ant Colony Optimization Technique.,” International Journal of Science and Research, vol. 2, no. 6, pp. 114–120, 2013.

M. Dorigo, M. Birattari, and T. Stutzle, “Ant Colony Optimization: Artificial Ants as a Computational Intelligence Technique,” IEEE Computational Intelligence Magazine, 2006.

J. Rahebi, Z. Elmi, and K. Shayan, “Digital image edge detection using an ant colony optimization based on genetic algorithm,” In Cybernetics and Intelligent Systems (CIS), IEEE Conference, pp. 145–149, 2010.

F. Liantoni, C. K. Kartika, and H. M. Tri, “Adaptive Ant Colony Optimization based Gradient for Edge Detection,” Journal of Computer Science, vol. 7, no. 2, pp. 78–84, 2014.

F. Liantoni, N. Suciati, and C. Fathicha, “Modifikasi Ant Colony Optimization Berdasarkan Gradient Untuk Deteksi Tepi Citra,” Jurnal Buana Informatika, vol. 6, no. 3, pp. 43–52, 2015.

F. Liantoni and L. Cahyani, “Pemanfaatan Hierarchical Clustering Untuk Pengelompokkan Daun Berdasarkan Fitur Moment Invariant,” Jurnal Ilmiah Edutic, Universitas Trunojoyo Madura, vol. 3, no. 2, pp. 91–98, 2017.

F. Liantoni, “Deteksi Tepi Citra Daun Mangga Menggunakan Algoritma Ant Colony Optimization,” Seminar Nasional Sains dan Teknologi Terapan III, vol. 3, pp. 411–418, 2015.

F. Liantoni and H. Nugroho, “Klasifikasi Daun Herbal Mengggunakan Metode Naïve Bayes Classifier dan K-Nearest Neighbor,” Jurnal Simantec, Universitas Trunojoyo Madura, vol. 5, no. 1, pp. 9–16, 2015.

F. Liantoni, “Klasifikasi Daun Dengan Perbaikan Fitur Citra Menggunakan Metode KNearnest Neighbor,” ULTIMATICS, Jurnal Teknik Informatika, vol. 7, no. 2, pp. 98–104, 2015.

S. Agarwal, “A Review Paper Of Edge Detection Using Ant Colony Optimization,” International Journal of Latest Research in Science and Technology, no. 1, pp. 120–123, 2012.

G. Goujon, Chaoqun, and W. Jianhong, Data Clusterin Theory, Algorithms, and Applications, Virginia, 2007.


  • There are currently no refbacks.

Copyright (c) 2018 Febri Liantoni, Luky Agus Hermanto

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.