PENGARUH JARAK CELAH SUDU PADA MODIFIKASI BLADE SAVONIUS POTONGAN PARSIAL TERHADAP PERFORMA TURBIN VAWT

Donny Albari, Roni Akustik Kurniawan, Zain Lillahulhaq, Nasyith Hananur Rohiem, Novian Patria Uman Putra

Abstract

Turbin angin Savonius merupakan turbin angin Jenis VAWT (Vertical Axis Wind Turbine) yang berputar akibat gaya drag dari aliran angin. Turbin ini yang memiliki desain sederhana dan terbuat dari 2 silinder sirkular yang dipasang berlawanan arah. Beberapa Langkah telah dilakukan untuk meningkatkan efisiensi turbin diantaranya dengan mengatur aspect ratio, penggunaan endplate, mengatur jumlah sudu hingga modifikasi desain sudu. Modifikasi yang sering digunakan dalam pengembangan turbin savonius bertujuan untuk menimbulkan efek flushing pada negative wake yang terbentuk dibagian belakang sudu turbin. Efek flusing dapat ditimbulkan dengan pemanfaatan overlap, slotted blade dan vent pada turbin Savonius. Penelitian ini dilakukan untuk mengetahui performa turbin Savonius dengan potongan parsial. Performa turbin yang di jadikan tolak ukur dalam penelitian ini adalah kecepatan angular turbin dan daya yang dihasilkan oleh turbin. Hasil penelitian menunjukan bahwa celah yang dibuat diantara potongan sudu parsial menyebabkan munculnya efek flushing yang berlebih (over-flushing) pada sudu. Aliran fluida dengan momentum tinggi terbuang akibat munculnya gap yang lebar diantara potongan sudu parsial. Pengurangan efek over flusing dapat dilakukan dengan mengurangi jarak gap antara potongan sudu parsial.

Keywords

Sudu Potongan Parsial, Over-Flushing, Savonius VAWT

Full Text:

PDF

References

M. Ulum et al., “PENGABDIAN MASYARAKAT PENYULUHAN PERAKITAN LAMPU PENERANGAN BERTENAGA SURYA KEPADA MASYARAKAT NAMBANGAN,” J. Sci. Soc. Dev., vol. 3, no. 1, pp. 1–7, Sep. 2020, Accessed: Oct. 24, 2020. [Online]. Available: https://journal.unusida.ac.id/index.php/jssd/article/view/285.

J. M. Kadang and J. Windarta, “Optimasi Sosial-Ekonomi pada Pemanfaatan PLTS PV untuk Energi Berkelanjutan di Indonesia,” J. Energi Baru dan Terbarukan, vol. 2, no. 2, pp. 74–83, Jul. 2021, doi: 10.14710/JEBT.2021.11113.

Y. Wulandari Mirzayanti et al., “Pemanfaatan Tempurung Kelapa sebagai Katalis pada Proses Konversi Minyak Curah Menjadi Biodiesel,” J. Res. Technol., vol. VI, no. 2, pp. 173–183, Dec. 2020, Accessed: Jan. 02, 2021. [Online]. Available: https://journal.unusida.ac.id/index.php/jrt/article/view/351.

D. Yao et al., “Carbon footprint and water footprint analysis of generating synthetic natural gas from biomass,” Renew. Energy, vol. 186, pp. 780–789, Mar. 2022, doi: 10.1016/J.RENENE.2022.01.014.

C. Arnold, “Manta Ray: A Hydrokinetic and Solar Power Generator for the Desalination and Purification of Freshwater and Saltwater for Disaster Relief Hydro Relief,” Student Res. Symp., Nov. 2021, Accessed: Sep. 15, 2022. [Online]. Available: https://commons.erau.edu/db-srs/2021/poster-session-two/24.

M. M. Frysztacki, J. Hörsch, V. Hagenmeyer, and T. Brown, “The strong effect of network resolution on electricity system models with high shares of wind and solar,” Appl. Energy, vol. 291, p. 116726, Jun. 2021, doi: 10.1016/J.APENERGY.2021.116726.

J. Langer, J. Quist, K. Blok, S. Ulgiati, H. Schnitzer, and R. Santagata, “Review of Renewable Energy Potentials in Indonesia and Their Contribution to a 100% Renewable Electricity System,” Energies 2021, Vol. 14, Page 7033, vol. 14, no. 21, p. 7033, Oct. 2021, doi: 10.3390/EN14217033.

S. F. Pamungkas, D. S. Wijayanto, H. Saputro, and I. Widiastuti, “Performance ‘S’ Type Savonius Wind Turbine with Variation of Fin Addition on Blade,” IOP Conf. Ser. Mater. Sci. Eng., vol. 288, no. 1, p. 012132, Jan. 2018, doi: 10.1088/1757-899X/288/1/012132.

Z. Lillahulhaq and V. S. Djanali, “Numerical Study of Savonius Wind Turbine with Fluid-Rotor Interactions,” IPTEK J. Proc. Ser., vol. 0, no. 1, p. 48, Apr. 2019, doi: 10.12962/j23546026.y2019i1.5106.

Z. Lillahulhaq, A. Muchyiddin, R. W. Suhadak, I. Amirullah, F. D. Sandy, and A. C. Embot, “Experimental Study Wind Turbine Performance of Straight-Savonius and Ice-Wind Type on the Similar proportion Aspect Ratio,” J. Phys. Conf. Ser., vol. 2117, no. 1, p. 012008, Nov. 2021, doi: 10.1088/1742-6596/2117/1/012008.

Z. Lillahulhaq and I. Masfufiah, “Studi eksperimen pengaruh penggunaan endplate berlubang pada turbin savonius an experimental study of circular cut off endplate effect on the savonius turbine,” vol. 7, no. 1, pp. 63–72, 2022, doi: 10.20527/sjmekinematika.v7i.

R. W. Suhadak et al., “Studi Eksperimen Pengaruh Penggunaan Partial Cut off blades pada Tubin Angin Tipe Savonius,” Pros. SENASTITAN Semin. Nas. Teknol. Ind. Berkelanjutan, vol. 2, no. 0, pp. 401–408, Mar. 2022, Accessed: Sep. 15, 2022. [Online]. Available: http://ejournal.itats.ac.id/senastitan/article/view/2698.

F. Wenehenubun, A. Saputra, and H. Sutanto, “An Experimental Study on the Performance of Savonius Wind Turbines Related With The Number Of Blades,” Energy Procedia, vol. 68, pp. 297–304, Apr. 2015, doi: 10.1016/J.EGYPRO.2015.03.259.

A. Al Noman, Z. Tasneem, M. F. Sahed, S. M. Muyeen, S. K. Das, and F. Alam, “Towards next generation Savonius wind turbine: Artificial intelligence in blade design trends and framework,” Renew. Sustain. Energy Rev., vol. 168, p. 112531, Oct. 2022, doi: 10.1016/J.RSER.2022.112531.

A. M. Abdelsalam, M. A. Kotb, K. Yousef, and I. M. Sakr, “Performance study on a modified hybrid wind turbine with twisted Savonius blades,” Energy Convers. Manag., vol. 241, p. 114317, Aug. 2021, doi: 10.1016/J.ENCONMAN.2021.114317.

A. S. Siddiqui, S. N. Mian, M. Alam, M. S. Ul Haq, A. H. Memon, and M. S. Jamil, “Experimental Study to Assess the Performance of Combined Savonius Darrieus Vertical Axis Wind Turbine at Different Arrangements,” Proc. 21st Int. Multi Top. Conf. INMIC 2018, Dec. 2018, doi: 10.1109/INMIC.2018.8595538.

K. Sobczak, “Numerical investigations of an influence of the aspect ratio on the Savonius rotor performance,” J. Phys. Conf. Ser., vol. 1101, no. 1, p. 012034, 2018, doi: 10.1088/1742-6596/1101/1/012034.

J. V. Akwa, H. A. Vielmo, and A. P. Petry, “A review on the performance of Savonius wind turbines,” Renew. Sustain. Energy Rev., vol. 16, no. 5, pp. 3054–3064, Jun. 2012, doi: 10.1016/J.RSER.2012.02.056.

P. A. Setiawan, T. Yuwono, and W. A. Widodo, “Effect of a circular cylinder in front of advancing blade on the savonius water turbine by using transient simulation,” Int. J. Mech. Mechatronics Eng., vol. 19, no. 1, pp. 151–159, 2019.

K. Takamure, H. Wang, T. Uchiyama, S. Iio, and T. Ikeda, “Vortex-in-cell simulation of the flow and performance of a Savonius hydraulic turbine with S-shaped blades,” J. Renew. Sustain. Energy, vol. 13, no. 4, p. 044501, Jul. 2021, doi: 10.1063/5.0051203.

K. A. H. Al-Gburi, F. B. I. Alnaimi, B. A. Al-quraishi, E. Sann Tan, and M. M. Maseer, “A comparative study review: The performance of Savonius-type rotors,” Mater. Today Proc., vol. 57, pp. 343–349, Jan. 2022, doi: 10.1016/J.MATPR.2021.09.226.

E. Fatahian, F. Ismail, M. Hafifi Hafiz Ishak, and W. Shyang Chang, “An innovative deflector system for drag-type Savonius turbine using a rotating cylinder for performance improvement,” Energy Convers. Manag., vol. 257, p. 115453, Apr. 2022, doi: 10.1016/J.ENCONMAN.2022.115453.

J. H. Lee, Y. T. Lee, and H. C. Lim, “Effect of twist angle on the performance of Savonius wind turbine,” Renew. Energy, vol. 89, pp. 231–244, Apr. 2016, doi: 10.1016/J.RENENE.2015.12.012.

C. M. Shashikumar, H. Vijaykumar, and M. Vasudeva, “Numerical investigation of conventional and tapered Savonius hydrokinetic turbines for low-velocity hydropower application in an irrigation channel,” Sustain. Energy Technol. Assessments, vol. 43, p. 100871, Feb. 2021, doi: 10.1016/J.SETA.2020.100871.

C. M. Chan, H. L. Bai, and D. Q. He, “Blade shape optimization of the Savonius wind turbine using a genetic algorithm,” Appl. Energy, vol. 213, pp. 148–157, Mar. 2018, doi: 10.1016/J.APENERGY.2018.01.029.

S. Fanel Dorel, G. Adrian Mihai, and D. Nicusor, “Review of Specific Performance Parameters of Vertical Wind Turbine Rotors Based on the SAVONIUS Type,” Energies, vol. 14, no. 7, p. 1962, Apr. 2021, doi: 10.3390/en14071962.

W. Tian, B. Song, J. H. Van Zwieten, and P. Pyakurel, “Computational Fluid Dynamics Prediction of a Modified Savonius Wind Turbine with Novel Blade Shapes,” Energies 2015, Vol. 8, Pages 7915-7929, vol. 8, no. 8, pp. 7915–7929, Jul. 2015, doi: 10.3390/EN8087915.

S. Sharma and R. K. Sharma, “Performance improvement of Savonius rotor using multiple quarter blades – A CFD investigation,” Energy Convers. Manag., vol. 127, pp. 43–54, Nov. 2016, doi: 10.1016/J.ENCONMAN.2016.08.087.

J. V. Akwa, G. Alves Da Silva Júnior, and A. P. Petry, “Discussion on the verification of the overlap ratio influence on performance coefficients of a Savonius wind rotor using computational fluid dynamics,” Renew. Energy, vol. 38, no. 1, pp. 141–149, Feb. 2012, doi: 10.1016/J.RENENE.2011.07.013.

R. Afify, “Experimental Studies of an IceWind Turbine,” 2019. Accessed: May 05, 2021. [Online]. Available: http://www.ripublication.com.

Z. Lillahulhaq and V. S. Djanali, “Unsteady simulations of Savonius and Icewind turbine blade design using fluid-structure interaction method,” in AIP Conference Proceedings, Dec. 2019, vol. 2187, no. 1, p. 020009, doi: 10.1063/1.5138264.

T. Gad, A. Shokry, R. Afify, E. Saber, and M. Hassan, “Experimental Study of Two, Two-Reversed, Three and Four Blade IceWind Turbine,” 2020. Accessed: May 08, 2021. [Online]. Available: http://www.ripublication.com.

N. Alom and U. K. Saha, “Performance evaluation of vent-augmented elliptical-bladed savonius rotors by numerical simulation and wind tunnel experiments,” 2018, doi: 10.1016/j.energy.2018.03.136.

Y. Kassem and H. Çamur, “A Numerical Study of a Newly Developed of Savonius Wind Turbine Style on Increasing the Performance of Savonius Wind Rotor,” Am. J. Mod. Energy, vol. 3, no. 6, pp. 115–120, 2017, doi: 10.11648/j.ajme.20170306.11.

U. H. Rathod, P. K. Talukdar, V. Kulkarni, and U. K. Saha, “Effect of Capped Vents on Torque Distribution of a Semicircular-Bladed Savonius Wind Rotor,” J. Energy Resour. Technol. Trans. ASME, vol. 141, no. 10, Oct. 2019, doi: 10.1115/1.4043791.

M. Hadi Ali, “Experimental Comparison Study for Savonius Wind Turbine of Two & Three Blades At Low Wind Speed,” Int. J. Mod. Eng. Res. www.ijmer.com, vol. 3, no. 5, pp. 2978–2986, 2013.

Z. Lillahulhaq and H. S. Maulana, “Pengaruh Model Turbulensi Aliran Terhadap Simulasi Numerik Aircurtain,” Mek. J. Tek. Mesin, vol. 5, no. 02, pp. 40–45, Jan. 2020, doi: 10.12345/JM.V5I02.3008.G2579.

Refbacks

  • There are currently no refbacks.