Metode Decision Tree C4.5 untuk Klasifikasi Berat Badan Obesitas

Tutuk Indriyani, Chelvin Suprapto, Iqbal Izha Mahendra, Raditya Pratama

Abstract


Obesitas merupakan masalah kesehatan yang serius dan telah menjadi salah satu faktor utama penyebab penyakit kronis seperti diabetes, penyakit jantung, dan hipertensi. Dalam penelitian ini, metode Decision Tree digunakan untuk melakukan klasifikasi berat badan dan mengidentifikasi faktor-faktor yang berkontribusi terhadap obesitas. Decision tree C4.5 algoritma yang digunakan untuk membuat decision tree (pohon keputusan), pohon keputusan sebuah obyek yang diklasifikasikan pada pohon wajib dites nilai Entropy dan Gainnya. Nilai Entropy tersebut kemudian dihitung nilai Gain masing-masing atribut, kemudian atribut dengan Gain tertinggi dipilih menjadi test atribut dari suatu node. Proses yang dilakukan saat klasifikasi adalah dataset dibagi menjadi dua bagian, data Training dan data Testing, kemudian menghitung Entropy dan Gain, sehingga menghasilkan pohon keputusan Decision Tree C4.5. Dari proses sebelumnya menghasilkan hasil klasifikasi dari data Testing. Berdasarkan hasil klasifikasi di uji menggunakan Confusion Matrix untuk menghitung Accuracy, Precision, Recall, F1_Score. model berhasil mendeteksi sekitar 92% dari semua contoh kelas yang sebenarnya ada dalam dataset dan hasil f1-score adalah 0.89 yang berarti f1-score bernilai 89%,


Full Text:

PDF

References


J. Glass et al., “Management and impact of obesity in Canada: A real-world survey of people with obesity and their physicians,” Obesity Pillars, vol. 14, Jun. 2025, doi: 10.1016/j.obpill.2025.100171.

T. Indriyani, M. Kurniawan, G. Yuliastuti, C. Prabiantissa, and R. Kembang, “An Improve KNN Method for Classification of Sexually Transmitted Diseases,” 2023 Sixth International Conference on Vocational Education and Electrical Engineering (ICVEE), vol. 3, pp. 315–319, Sep. 2023.

S. Christensen and C. Nelson, “Chronicity of obesity and the importance of early treatment to reduce cardiometabolic risk and improve body composition,” Obesity Pillars, p. 100175, Apr. 2025, doi: 10.1016/j.obpill.2025.100175.

P. Li, F. Xiong, X. Huang, and X. Wen, “Construction and optimization of vending machine decision support system based on improved C4.5 decision tree,” Heliyon, vol. 10, no. 3, Feb. 2024, doi: 10.1016/j.heliyon.2024.e25024.

A. P. Muniyandi, R. Rajeswari, and R. Rajaram, “Network anomaly detection by cascading k-Means clustering and C4.5 decision tree algorithm,” in Procedia Engineering, 2012, pp. 174–182. doi: 10.1016/j.proeng.2012.01.849.

T. Mahmudiono et al., “Integrating Traffic Light Diet System via food analysis in Android app for adolescent nutrition education: A strategy to reduce sugar, salt, and fat consumption,” Clinical Nutrition Open Science, vol. 59, pp. 206–215, Feb. 2025, doi: 10.1016/j.nutos.2024.10.014.

M. Ng et al., “National-level and state-level prevalence of overweight and obesity among children, adolescents, and adults in the USA, 1990–2021, and forecasts up to 2050,” The Lancet, Dec. 2024, doi: 10.1016/S0140-6736(24)01548-4.

Y. Li, E. Herrera-Viedma, G. Kou, and J. A. Morente-Molinera, “Z-number-valued rule-based decision trees,” Inf Sci (N Y), vol. 643, Sep. 2023, doi: 10.1016/j.ins.2023.119252.

H. Bin Wang and Y. J. Gao, “Research on C4.5 algorithm improvement strategy based on MapReduce,” in Procedia Computer Science, Elsevier B.V., 2021, pp. 160–165. doi: 10.1016/j.procs.2021.02.045.

A. P. Muniyandi, R. Rajeswari, and R. Rajaram, “Network anomaly detection by cascading k-Means clustering and C4.5 decision tree algorithm,” in Procedia Engineering, 2012, pp. 174–182. doi: 10.1016/j.proeng.2012.01.849.

T. Indriyani, I. Utoyo, and R. Rulaningtyas, “Comparison of image edge detection methods on potholes road images,” in Journal of Physics: Conference Series, IOP Publishing Ltd, Sep. 2020. doi: 10.1088/1742-6596/1613/1/012067.

T. Indriyani, S. Nurmuslimah, A. Taufiqurrahman, R. K. Hapsari, C. N. Prabiantissa, and A. Rachmad, “Steganography on Color Images Using Least Significant Bit (LSB) Method,” 2023, pp. 39–48. doi: 10.2991/978-94-6463-174-6_5.

T. Indriyani, M. I. Utoyo, and R. Rulaningtyas, “A New Watershed Algorithm for Pothole Image Segmentation,” Studies in Informatics and Control, vol. 30, no. 3, pp. 131–139, 2021, doi: 10.24846/v30i3y202112.

K. Qazanfari and R. Safabakhsh, “A new steganography method which preserves histogram: Generalization of LSB++,” Inf Sci (N Y), vol. 277, pp. 90–101, Sep. 2014, doi: 10.1016/j.ins.2014.02.007.




DOI: https://doi.org/10.31284/p.snestik.2025.7619

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Tutuk Indriyani

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.