Analisis Hasil Produksi Perikanan Budidaya Air Tawar di Kebumen Menggunakan Metode Clustering K-means

rohmatulloh muhamad ikhsanuddin

Abstract


Kebumen, as one of the districts in the south of Central Java Province with an area coverage of 26 sub-districts, has the potential for freshwater aquaculture production to reach 3,316,378 kg in 2022. This production can be optimized by creating clusters in sub-districts in Kebumen to utilize this area. Data mining using the k-means clustering method helps to group sub-district areas so that it can assist in decision making. Tests in data mining using Davies Bouldin with values k=2 to 10 show that the best value results, namely at value k=3, is 0.487. The K-means method with a value of k=3 produces 3 clusters with the result that cluster 1 consists of 19 sub-districts, namely the areas of Petanahan, Bulus Pesantren, Ambal, Mirit, Bonorowo, Prembun, Padureso, Alian, Poncowarno, Kebumen, Pejagoan, Sruweng, Rowokele, Sempor , Gombong, Karanganyar, Karanggayam, Sadang and Karangsambung. Cluster 2 consists of 1 sub-district, namely the Kuwarasan area, while cluster 3 consists of 6 sub-districts, namely the Ayah, Buayan, Puring, Klirong, Kutowinangun and Adimulyo areas.

Keywords


Fishery; datamining; clustering; k-means;

Full Text:

PDF

References


U. Windi, N. Istiqamah, and Muslimah, “Identifikasi Potensi Perikanan Air Tawar Di Desa Perigi Landu Kecamatan Sejangkung Kabupaten Sambas,” NEKTON J. Perikan. Dan Ilmu Kelaut., vol. 1, no. 1, pp. 36–43, Mar. 2021, doi: 10.47767/nekton.v1i1.268.

M. Fattah, “Komoditas Unggulan Ikan Air Tawar Pulau Kalimantan,” JFMR-J. Fish. Mar. Res., vol. 5, no. 2, Aug. 2021, doi: 10.21776/ub.jfmr.2021.005.02.8.

A. Maulana and K. N. Akbar, “Penerapan Clustering Menggunakan Algoritma K-Means Sebagai Analisis Produksi Komoditas Perikanan Provinsi di Indonesia,” 2021.

A. Saputra and R. A. Sahputra, “Penentuan Kluster UMKM Sektor Perdagangan dan Perikanan Melalui Pendekatan Metode Clustering Data Mining di Kabupaten Aceh Barat,” J. Optim., vol. 9, no. 2, p. 173, Oct. 2023, doi: 10.35308/jopt.v9i2.8463.

M. H. Adiya and Y. Desnelita, “Penerapan Algoritma K-Means Untuk Clustering Data Obat-Obatan Pada RSUD Pekanbaru,” vol. 05, no. 01, 2019.

J. M. Barus, M. Zunaidi, and F. Sonata, “Implementasi Data Mining Untuk Klasterisasi Penjualan Makanan Dan Minuman Menggunakan Metode K-Means (Studi Kasus: Bloum Coffee),” vol. 3, no. 6, 2020.

M. Bakri, “Penerapan Data Mining untuk Clustering Kualitas Batu Bara dalam Proses Pembakaran di PLTU Sebalang Menggunakan Metode K-Means,” J. Teknoinfo, vol. 11, no. 1, p. 6, Jun. 2017, doi: 10.33365/jti.v11i1.3.

A. Nugraha, O. Nurdiawan, and G. Dwilestari, “Penerapan Data Mining Metode K-Means Clustering Untuk Analisa Penjualan Pada Toko Yana Sport,” JATI J. Mhs. Tek. Inform., vol. 6, no. 2, pp. 849–855, Nov. 2022, doi: 10.36040/jati.v6i2.5755.




DOI: https://doi.org/10.31284/p.snestik.2025.7237

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 rohmatulloh muhamad ikhsanuddin

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.