Optimasi Model Rekomendasi Topik Skripsi berdasarkan Performa Akademik Mahasiswa menggunakan SMOTE

Nelly Oktavia Adiwijaya, Muhammad Farhan Al Abror, Tio Dharmawan, Muhamad Arief Hidayat

Abstract


Sekitar 68% mahasiswa mengalami keterlambatan dalam menyelesaikan skripsi yang mengindikasikan adanya kesulitan dalam penentuan topik penelitian sesuai dengan minat dan keahlian.Ketidaksesuaian ini seringkali disebabkan kurangnya pemahaman mahasiswa terhadap kemampuan akademik yang dimiliki. Hal ini berdampak signifikan pada keterlambatan kelulusan mahasiswa.Penelitian ini bertujuan mengatasi permasalahan tersebut dengan membangun model klasifikasi untuk membantu mahasiswa dalam menentukan topik skripsi berdasarkan kemampuan akademik mereka. Indikator yang digunakan berupa transkrip nilai mata kuliah mahasiswa dari semester 1 hingga semester 6. Penelitian ini menggunakan metode Feature Selection dan SMOTE sebelum dilakukan pemodelan untuk meningkatkan kualitas data. Dua algoritma Support Vector Machine (SVM) dengan kernel RBF dan Naive Bayes tipe kategorikal digunakan untuk membangun model klasifikasi. Berdasarkan hasil analisis yang diperoleh bahwa penerapan SMOTE untuk penanganan data sebelum diklasifikasi berpengaruh sangat baik terhadap hasil akurasi. Algoritma Support Vector Machine dengan kernel RBF memberikan akurasi tertinggi sebesar 96.81% sedangkan Naive Bayes tipe Categorical menghasilkan akurasi 83.75%. Hasil penelitian ini memberikan solusi praktis bagi mahasiswa dalam memilih topik skripsi yang relevan dengan kemampuan mereka dimana mata kuliah yang terkait dengan setiap topik skripsi dapat berbeda-beda untuk masing-masing mahasiswa.

Keywords


Rekomendasi Topik Skripsi; Support Vector Machine; Naïve Bayes; SMOTE

Full Text:

PDF

References


E. M. Sari Rochman et al., “Classification of Thesis Topics Based on Informatics Science Using SVM,” IOP Conf Ser Mater Sci Eng, vol. 1125, no. 1, p. 012033, May 2021, doi: 10.1088/1757-899X/1125/1/012033.

F. Fitrah and A. Irianto, “Analisis Prokrastinasi Dalam Mengerjakan Skripsi Pada Mahasiswa Jurusan Pendidikan Ekonomi Angkatan 2015 Universitas Negeri Padang,” Jurnal Ecogen, vol. 2, no. 3, p. 412, Oct. 2019, doi: 10.24036/jmpe.v2i3.7412.

C. Slamet, F. M. Maliki, U. Syaripudin, A. S. Amin, and M. A. Ramdhani, “Thesis topic recommendation using simple multi attribute rating technique,” J Phys Conf Ser, vol. 1402, no. 6, p. 066105, Dec. 2019, doi: 10.1088/1742-6596/1402/6/066105.

H. Aldowah, H. Al-Samarraie, and W. M. Fauzy, “Educational data mining and learning analytics for 21st century higher education: A review and synthesis,” Telematics and Informatics, vol. 37, pp. 13–49, Apr. 2019, doi: 10.1016/j.tele.2019.01.007.

N. O. Adiwijaya and R. Sarno, “Specialty Coffees Classification Utilizes Feature Selection and Machine Learning,” 2024, pp. 94–101. doi: 10.2991/978-94-6463-445-7_11.

E. Haryatmi and S. Pramita Hervianti, “Penerapan Algoritma Support Vector Machine Untuk Model Prediksi Kelulusan Mahasiswa Tepat Waktu,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 2, pp. 386–392, Apr. 2021, doi: 10.29207/resti.v5i2.3007.

L. B. Ilmawan and M. A. Mude, “Perbandingan Metode Klasifikasi Support Vector Machine dan Naïve Bayes untuk Analisis Sentimen pada Ulasan Tekstual di Google Play Store,” ILKOM Jurnal Ilmiah, vol. 12, no. 2, pp. 154–161, Aug. 2020, doi: 10.33096/ilkom.v12i2.597.154-161.

F. Farid, U. Enri, and Y. Umaidah, “Sistem Pendukung Keputusan Rekomendasi Topik Skripsi Menggunakan Naïve Bayes Classifier,” JOINTECS (Journal of Information Technology and Computer Science), vol. 6, no. 1, p. 35, Jan. 2021, doi: 10.31328/jointecs.v6i1.2076.

Y.-Z. Li and F. Min, “Parallel–serial architecture with instance correlation label-specific features for multi-label learning,” Knowl Based Syst, vol. 304, p. 112568, Nov. 2024, doi: 10.1016/j.knosys.2024.112568.

G. Verhoeven, “Optimal performance with Random Forests: does feature selection beat tuning?,” github.io. Accessed: Dec. 26, 2024. [Online]. Available: https://gsverhoeven.github.io/post/random-forest-rfe_vs_tuning/

A. Pratiwi, N. Oktavia Adiwijaya, and Q. A’yuni Ar Ruhimat, “Pengukuran Efektivitas Endorsement Melalui Akun Kreator dan Akun Publik Instagram Menggunakan TEARS Model,” JURNAL SOSIAL Jurnal Penelitian Ilmu-Ilmu Sosial, vol. 25, no. 2, pp. 69–77, Nov. 2024, doi: 10.33319/sos.v25i2.211.

M. Stephanou and M. Varughese, “Sequential estimation of Spearman rank correlation using Hermite series estimators,” J Multivar Anal, vol. 186, p. 104783, Nov. 2021, doi: 10.1016/j.jmva.2021.104783.

S. Matharaarachchi, M. Domaratzki, and S. Muthukumarana, “Enhancing SMOTE for imbalanced data with abnormal minority instances,” Machine Learning with Applications, vol. 18, p. 100597, Dec. 2024, doi: 10.1016/j.mlwa.2024.100597.

P. Sun, Z. Wang, L. Jia, and Z. Xu, “SMOTE-kTLNN: A hybrid re-sampling method based on SMOTE and a two-layer nearest neighbor classifier,” Expert Syst Appl, vol. 238, p. 121848, Mar. 2024, doi: 10.1016/j.eswa.2023.121848.

D. Berrar, “Bayes’ Theorem and Naive Bayes Classifier,” in Reference Module in Life Sciences, Elsevier, 2024. doi: 10.1016/B978-0-323-95502-7.00118-4.

H. R. Baghaee, D. Mlakic, S. Nikolovski, and T. Dragicevic, “Anti-Islanding Protection of PV-Based Microgrids Consisting of PHEVs Using SVMs,” IEEE Trans Smart Grid, vol. 11, no. 1, pp. 483–500, Jan. 2020, doi: 10.1109/TSG.2019.2924290.

M. N. Qureshi and N. A. Nor, “Optimisation and cross-validation of an e-hailing hybrid pricing algorithm using a supervised learning classification and regression tree model: a heuristic approach,” J King Saud Univ Sci, vol. 36, no. 3, Mar. 2024, doi: 10.1016/j.jksus.2024.103107.

H. S. Mansur, N. O. Adiwijaya, and T. Dharmawan, “Optimization of Machine Learning Algorithms with Bagging and AdaBoost Methods for Stroke Disease Prediction,” 2023.




DOI: https://doi.org/10.31284/p.snestik.2025.7055

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Nelly Oktavia Adiwijaya, Muhammad Farhan Al Abror, Tio Dharmawan, Muhamad Arief Hidayat

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.