Pengaruh Penggunaan Emoji Pada Tingkat Akurasi Sentimen Di Twitter Menggunakan Metode Support Vector Machine

Tio Dharmawan, Virli Galuh Kinanti, Achmad Maududie

Abstract


Opinions and preferences expressed on social media and microblogging services are very important for sentiment analysis. A Support Vector Machine (SVM) is a learning system that uses a hypothetical space in the form of a linear function in a high dimensional feature space and applies a learning bias derived from statistical learning theory. The accuracy results obtained by the Support Vector Machine method from the first topic, namely booster vaccines as a homecoming requirement, were 65% for text only and 69% for text containing emoji. The accuracy results for the second discussion topic, namely demonstrations against Jokowi for 3 periods, were 79% for text only and 82% for text containing emoji. As for the third topic regarding the scarcity of cooking oil and rising fuel prices, the accuracy obtained is 74% for text only and 76% for text containing emojis.


Keywords


sentiment analysis;emoji characters;social media analysis;SVM

Full Text:

PDF

References


Kemenkominfo, “Pengguna internet di Indonesia 63 Juta Orang,” 2013.

M. Hadi, Twitter untuk orang awam. Palembang: Maxikom, 2010.

M. Shiha and S. Serkan, “The Effects of Emoji in Sentiment Analysis,” Bahcesehir University, 2017, doi: 10.17706/IJCEE.2017.9.1.360-369.

M. I. Fikri, T. S. Sabrila, and Y. Azhar, “Perbandingan Metode Naïve Bayes dan Support Vector Machine pada Analisis Sentimen Twitter,” Smatika Jurnal, vol. 10, no. 02, pp. 71–76, 2020.

F. S. Jumeilah, “Penerapan Support Vector Machine (SVM) untuk Pengkategorian Penelitian,” Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), vol. 1, no. 1, pp. 19–25, 2017, doi: 10.29207/resti.v1i1.11.

A. M. Zuhdi, E. Utami, and S. Raharjo, “Analisis Sentimen Twitter terhadap Capres Indonesia 2029 dengan Metode K-NN,” Jurnal Informa Politeknik Indonusa Surakarta, vol. 5, pp. 2–7, 2019.

D. Rustiana and N. Rahayu, “Analisis Sentimen Pasar Otomotif Mobil: Tweets Twitter Menggunakan Naïve Bayes,” Jurnal SIMETRIS, vol. 8, no. 1, Apr. 2017.

D. Indraloka, D. Smaradahana, and B. Santosa, “Penerapan Text Mining untuk Melakukan Clustering Data Tweets Shopee Indonesia,” Jurnal Sains Dan Seni ITS, vol. 6, no. 2, pp. 2337–3520, 2017.

M. Adriani, J. Asian, B. Nazief, S. M. M. Tahaghoghi, and H. E. Williams, “Stemming Indonesian: A confix-stripping approach,” ACM Transactions on Asian Language Information Processing, vol. 6, no. 4, p. 13, 2007, doi: 10.1145/1316457.1316459.

M. M. Sya’bani and R. Umilasari, “Penerapan Metode Cosine Similarity dan Pembobotan TF/IDF pada Sistem Klasifikasi Sinopsis Buku di Perpustakaan Kejaksaan Negeri Jember,” 2018.

D. Satriani, L. U. Khasanah, and N. A. Rizki, “Penerapan Metode Grid-Search dalam Menentukan Parameter Model Pertumbuhan Penduduk di Kota Samarinda,” in Prosiding Seminar Nasional Matematika dan Statistika, May 2019, pp. 65–74.

P. Flach, Machine Learning: The Art and Science of Algorithms that Makes Sense of Data. New York: Cambridge University Press, 2012.

V. Sari, F. Firdausi, and Y. Azhar, “Perbandingan Prediksi Kualitas Kopi Arabika dengan Menggunakan Algoritma SGD, Random Forest dan Naive Bayes,” Edumatic: Jurnal Pendidikan Informatika, vol. 4, no. 2, pp. 1–9, 2020, doi: 10.29408/edumatic.v4i2.2202.




DOI: https://doi.org/10.31284/p.snestik.2025.7046

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Tio Dharmawan, Virli Galuh Kinanti, Achmad Maududie

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.