Analisis Kekuatan Struktur Deck Akibat Penambahan Boat Crane Pada Kapal Fast Utility Vessel 40 M Dengan Metode Fem Analysis

Muchammad Fendy Firmansyah, Erifive Pranatal

Abstract

ABSTRAK

Penelitian ini bertujuan untuk menganalisis kekuatan struktur dek pada kapal Fast Utility Vessel sepanjang 40 meter akibat penambahan boat crane. Metode yang digunakan dalam analisis ini adalah Finite Element Method (FEM) yang memungkinkan untuk mengidentifikasi dan mengevaluasi distribusi tegangan serta deformasi pada struktur dek kapal. Studi ini mencakup pemodelan elemen hingga tiga dimensi dari struktur dek dan boat crane, serta penentuan kondisi batas dan beban kerja yang relevan. Hasil analisis menunjukkan bahwa penambahan boat crane memberikan pengaruh signifikan terhadap kekuatan dan stabilitas struktur dek. Identifikasi area kritis dan rekomendasi perkuatan struktur juga disertakan untuk memastikan keselamatan dan kinerja kapal secara keseluruhan.

Kata kunci: Fast Utility Vessel, Finite Element Method (FEM), Distribusi Tegangan, Deformasi, Stabilitas Struktur

References

Astuti, K. P. (2012). Studi Numerik dan Eksperimental Distribusi Tegangan dan Regangan Beton. Foreign Affairs, 91(5), 1689–1699.

Brennan, M. (2007). Mobility And Impedance Methods.

Bruce, G. (2020). Shipbuilding Management. In Shipbuilding Management. https://doi.org/10.1007/978-981-15-8975-1

Eyres, D. J., & Bruce, G. J. (2012). Ship Construction. In Ship Construction. https://doi.org/10.1016/b978-0-08-097239-8.00001-5

Fish, J., & Belytschko, T. (2007). A First Course In Finite Elements. In Choice Reviews Online (Vol. 45, Issue 06). https://doi.org/10.5860/choice.45-3218

Gopalakrishnan, Srinivasan, Chakraborty, & Abir, Roy Mahapatra, D. (2008). Application of SFEM to SHM : Efficient.

Gourlay, T., & Lilienthal, T. (2002). Dynamic Stability of Ships in Waves. Pacific International Maritime Conference. http://cmst.curtin.edu.au/local/docs/pubs/gourlay_dynamic_stability_of_ships_in_waves.pdf

Gregoire, A., & Craig, A. (2007). Numerical Analysis and Optimization An Introduction to Mathematical Modelling and Numerical Simulation (Numerical Mathematics and Scientific Computation). Oxford University Press Inc., New York.

Kalpakijan, S., & Schmid, S. R. (1985). Manufacturing processes for engineering materials. In International Journal of Machine Tool Design and Research (Vol. 25, Issue 1). https://doi.org/10.1016/0020-7357(85)90061-7

Kaw, K. A. (2013). Mechanics of composite materials. In The International Handbook of FRP Composites in Civil Engineering. https://doi.org/10.1115/1.3423688

Law, A. M. (2015). Simulation Modeling and Analysis, FIFTH EDITION. www.averill-law.com

Logan, D. (2007). A First Course In The Finite Element Method. In Nelson, adivision of Thomson Canada Limited. (Vol. 4). https://doi.org/10.1016/0168-874x(87)90008-4

Misra, S. C. (2015). Design principles of ships and marine structures. In Design Principles of Ships and Marine Structures. https://doi.org/10.1201/b19041

Nagaraja, S., Elhaddad, M., Ambati, M., Kollmannsberger, S., De Lorenzis, L., & Rank, E. (2019). Phase-field modeling of brittle fracture with multi-level hp-FEM and the finite cell method. Computational Mechanics, 63(6), 1283–1300. https://doi.org/10.1007/s00466-018-1649-7

Popov, E. ., & Astamar, Z. (1984). Mekanika Teknik (Mechanics of Materials) (Edisi Kedu). Penerbit Erlangga.

RINA Rules. (2022). Rules for the Classification of High-Speed Craft (Vol. 4, Issue July).

Semyonov. (1966). Statics and dynamics of the ship.

Spyrou, K. J., & Papanikolaou, A. (1999). Ship Design for Dynamic Stability. 749(18), 167–178.

Storch, R. L., Hammon, C. P., Howard, M. B., & Richard, C. M. (1995). Ship Production. In Cornel Maritime Press. https://doi.org/10.1007/978-3-322-82967-2_32

Sukumar, N., Dolbow, J. E., & Moës, N. (2015). Extended finite element method in computational fracture mechanics: a retrospective examination. International Journal of Fracture, 196(1–2), 189–206. https://doi.org/10.1007/s10704-015-0064-8

Wiryosumarto, H., & Okumura, T. (2000). Teknologi Pengelasan Logam (8th ed., Vol. 8). PT. Pradnya Paramita.

Zander, N., Bog, T., Kollmannsberger, S., Schillinger, D., & Rank, E. (2015). Multi-level hp-adaptivity: high-order mesh adaptivity without the difficulties of constraining hanging nodes. Computational Mechanics, 55(3), 499–517. https://doi.org/10.1007/s00466-014-1118-x

Refbacks

  • There are currently no refbacks.