Selektif Amonia Leaching Dari Mixed Hydroxide Precipitate Pada Daur Ulang Baterai NMC

Lenggo Geni Katlin Jambak, Moh Fahrurrozi, Indra Perdana

Abstract

ABSTRAK

Peningkatan penggunaan baterai litium-ion dalam skala global menjadikan pengembangan dari bateri litium-ion menjadi semakin gencar. Pengembangan baterai litium-ion dapat dilakukan pada salah satu komponen penyusunya yaitu katoda. Banyak bahan katoda yang telah dikembangkan salah satunya yaitu nickel manganese cobalt (NMC). Baterai NMC memiliki masa pakai yang lama hingga kelebihan dari segi penyimpanan energinya. Hal ini menjadikan peningkatan penggunaan baterai NMC lalu menyebabkan penumpukkan limbah baterai NMC. Baterai NMC bekas mengandung bahan berbahaya juga mengandung logam berharga seperti nikel, kobalt, dan mangan yang dapat didaur ulang untuk bahan katoda baterai NMC. Prosedur hidrometalurgi dilakukan dengan metode selektif leaching menggunakan amonia. Amonia salah satu agen leaching yang dapat digunakan pada proses tersebut. Proses leaching dilakukan dari produk antaranya yaitu mixed hydroxide precipitate (MHP). Bentuk MHP memudahkan pemisahan dan menjadikan lebih selektif. Proses leaching dari MHP dilakukan dengan variasi suhu, solid/liquid, dan konsentrasi ammonium sulfat. Dilakukan pengambilan sampel dalam beberapa rentan waktu. Dilakukan uji ICP-OES terhadap sampel dengan perolehan recovery logam Ni 82,32%, dan Co 23,35%.

Kata kunci: baterai NMC, selektif leaching, MHP.

References

P. M. Guarango, “Pembuatan material katoda Nickel Manganese Cobalt (NMC) dari larutan prekursor dan leachate baterai bekas dengan metode flame assisted spray pyrolysis,” הארץ, no. 8.5.2017, pp. 2003–2005, 2022.

J. Neumann et al., “Recycling of Lithium-Ion Batteries — Current State of the Art , Circular Economy , and Next Generation Recycling,” vol. 2102917, 2022, doi: 10.1002/aenm.202102917.

L. da Silva Lima et al., “Life cycle assessment of lithium-ion batteries and vanadium redox flow batteries-based renewable energy storage systems,” Sustain. Energy Technol. Assessments, vol. 46, 2021, doi: 10.1016/j.seta.2021.101286.

F. A. Perdana, “Baterai lithium,” vol. 9, no. 2, pp. 103–109, 2020, doi: 10.20961/inkuiri.v9i2.50082.

S. T. Myung et al., “Nickel-Rich Layered Cathode Materials for Automotive Lithium-Ion Batteries: Achievements and Perspectives,” ACS Energy Letters, vol. 2, no. 1. pp. 196–223, 2017, doi: 10.1021/acsenergylett.6b00594.

S. A. Pradanawati et al., “A Comparative Study on The Electrochemical Properties of Hydrothermal and Solid-State Methods in The NCM Synthesis for Lithium Ion Battery Application,” ASEAN J. Chem. Eng., vol. 22, no. 2, pp. 284–295, 2022, doi: 10.22146/ajche.74209.

A. Dharmawan, M. Hakam, M. Arinawati, C. S. Yudha, and A. Purwanto, “Analisis Morfologi Prekursor NMC811 dari Mix Hydroxide Precipitate (MHP) dengan Presipitan Asam Oksalat,” Equilib. J. Chem. Eng., vol. 5, no. 2, pp. 97–102, 2022, doi: 10.20961/equilibrium.v5i2.58474.

W. Mrozik, M. A. Rajaeifar, O. Heidrich, and P. Christensen, “Environmental Science and pathways of spent lithium-ion batteries,” pp. 6099–6121, 2021, doi: 10.1039/d1ee00691f.

B. Niu, Z. Xu, J. Xiao, and Y. Qin, “Recycling Hazardous and Valuable Electrolyte in Spent Lithium-Ion Batteries: Urgency, Progress, Challenge, and Viable Approach,” Chem. Rev., vol. 123, no. 13, pp. 8718–8735, 2023, doi: 10.1021/acs.chemrev.3c00174.

S. Chong, W. Hawker, and J. Vaughan, “Selective reductive leaching of oxidised cobalt containing residue,” Miner. Eng., vol. 54, pp. 82–87, 2013, doi: 10.1016/j.mineng.2013.04.004.

Z. T. Ichlas, M. Z. Mubarok, A. Magnalita, J. Vaughan, and A. T. Sugiarto, “Processing mixed nickel‑cobalt hydroxide precipitate by sulfuric acid leaching followed by selective oxidative precipitation of cobalt and manganese,” Hydrometallurgy, vol. 191, no. August 2019, p. 105185, 2020, doi: 10.1016/j.hydromet.2019.105185.

C. Williams, W. Hawker, and J. W. Vaughan, “Selective leaching of nickel from mixed nickel cobalt hydroxide precipitate,” Hydrometallurgy, vol. 138, pp. 84–92, 2013, doi: 10.1016/j.hydromet.2013.05.015.

A. Katsiapi, P. E. Tsakiridis, P. Oustadakis, and S. Agatzini-Leonardou, “Cobalt recovery from mixed Co-Mn hydroxide precipitates by ammonia-ammonium carbonate leaching,” Miner. Eng., vol. 23, no. 8, pp. 643–651, 2010, doi: 10.1016/j.mineng.2010.03.006.

X. Hu, B. Ma, F. He, Y. Chen, and C. Wang, “Ammonia leaching process for selective extraction of nickel and cobalt from polymetallic mixed hydroxide precipitate,” J. Environ. Chem. Eng., vol. 10, no. 6, 2022, doi: 10.1016/j.jece.2022.108936.

M. Nasution, “Karakteristik bateraia sebagai penyimpan energi listrik spesifik,” J. Electr. Technol., vol. 6, no. 1, pp. 35–40, 2021.

M. M. Thackeray, W. I. F. David, P. G. Bruce, and J. B. Goodenough, “Lithium insertion into manganese spinels,” Mater. Res. Bull., vol. 18, no. 4, pp. 461–472, 1983, doi: 10.1016/0025-5408(83)90138-1.

B. Hiskey, “Metallurgy, Survey,” Kirk-Othmer Encycl. Chem. Technol., vol. 16, 2000, doi: 10.1002/0471238961.1921182208091911.a01.

F. Habashi, “Recent trends in extractive metallurgy,” J. Min. Metall. Sect. B Metall., vol. 45, no. 1, pp. 1–13, 2009, doi: 10.2298/JMMB0901001H.

P. A. Tasker, C. C. Tong, and A. N. Westra, “Co-extraction of cations and anions in base metal recovery,” Coord. Chem. Rev., vol. 251, no. 13-14 SPEC. ISS., pp. 1868–1877, 2007, doi: 10.1016/j.ccr.2007.03.014.

M. C. Djunaidi, D. S. Widodo, and S. Anwar, “Recovery Perak Dari Limbah Fotografi Melalui Membran Cair Berpendukung Dengan Senyawa Pembawa Asam Di-2-Etil Heksilfosfat (D2Ehpa),” Reaktor, vol. 11, no. 2, p. 98, 2007, doi: 10.14710/reaktor.11.2.98-103.

P. Meshram, B. D. Pandey, and T. R. Mankhand, “Recovery of valuable metals from cathodic active material of spent lithium ion batteries: Leaching and kinetic aspects,” Waste Manag., vol. 45, pp. 306–313, 2015, doi: 10.1016/j.wasman.2015.05.027.

Y. Zheng et al., “Lithium Nickel Cobalt Manganese Oxide Recovery via Spray Pyrolysis Directly from the Leachate of Spent Cathode Scraps,” 2019, doi: 10.1021/acsaem.9b01647.

H. Chen et al., “Leaching of cathode materials from spent lithium-ion batteries by using a mixture of ascorbic acid and HNO3,” Hydrometallurgy, vol. 205, p. 105746, 2021, doi: 10.1016/j.hydromet.2021.105746.

W. Yu, Y. Guo, Z. Shang, Y. Zhang, and S. Xu, “A review on comprehensive recycling of spent power lithium-ion battery in China,” eTransportation, vol. 11, p. 100155, 2022, doi: 10.1016/j.etran.2022.100155.

T. Liu, J. Chen, H. Li, and K. Li, “An integrated process for the separation and recovery of valuable metals from the spent LiNi0.5Co0.2Mn0.3O2 cathode materials,” Sep. Purif. Technol., vol. 245, no. December 2019, p. 116869, 2020, doi: 10.1016/j.seppur.2020.116869.

M. Z. Mubarok and J. Lieberto, “Precipitation of Nickel Hydroxide from Simulated and Atmospheric-leach Solution of Nickel Laterite Ore,” Procedia Earth Planet. Sci., vol. 6, pp. 457–464, 2013, doi: 10.1016/j.proeps.2013.01.060.

R. Harvey, R. Hannah, and J. Vaughan, “Selective precipitation of mixed nickel-cobalt hydroxide,” Hydrometallurgy, vol. 105, no. 3–4, pp. 222–228, 2011, doi: 10.1016/j.hydromet.2010.10.003.

A. Di Vincenzo and M. A. Floriano, “Elucidating the Influence of the Activation Energy on Reaction Rates by Simulations Based on a Simple Particle Model,” J. Chem. Educ., vol. 97, no. 10, pp. 3630–3637, 2020, doi: 10.1021/acs.jchemed.0c00463.

N. M. Laurendeaue, Statistical Thermodynamics: Fundamentals and applications. New York: Cambridge University Press, 2005.

Refbacks

  • There are currently no refbacks.