Karakterisasi Billet Paduan Magnesium Hasil Daur Ulang dengan Metode Direct Chill Casting

Pratyas Sarah Hayyaulia, Kardo Rajagukguk, Urip Agus Salim, Muslim Mahardika, Suyitno Suyitno, Budi Arifvianto

Abstract

Direct chill casting merupakan proses pengecoran semi kontinyu yang menghasilkan produk berbentuk billet, ingot, dan lain-lain. Penelitian ini bertujuan untuk mengaplikasikan direct chill casting sebagai metode daur ulang scrap magnesium. Material yang digunakan adalah scrap paduan magnesium yang dilebur kembali menggunakan tungku krusibel dan dilanjutkan dengan proses pengecoran menggunakan metode direct chill (DC) casting. Proses pengecoran dilakukan bertahap dengan mengunakan kecepatan pengecoran sebesar 56 mm/menit, 100 mm/menit dan 82 mm/menit. Temperatur tuang magnesium paduan sebesar 720°C dengan debit air pendingin konstan sebesar 11,4 liter/menit. Billet  hasil DC casting dengan kecepatan pengecoran sebesar 82 mm/menit memiliki cacat visual yang lebih sedikit dibandingkan dengan billet hasil DC casting dengan kecepatan pengecoran sebesar 56 mm/menit dan 100 mm/menit. Persentase porositas terendah dihasilkan dari kecepatan pengecoran 82 mm/menit, yakni sebesar 0,7%. Struktur mikro yang dihasilkan dari proses DC casting berbentuk dendritik. Kekerasan billet tertinggi dihasilkan pada kecepatan pengecoran 100 mm/menit yaitu sebesar 329 HVN atau 3,23 GPa. 

References

Z. Haiping, H. Lianxi, S. Yu, and W. Heng, “Recycling of AZ40 Magnesium Alloy Scraps by Hydriding- Dehydriding and Subsequent Consolidation Processing,” J. Mater. Eng. Perform., vol. 24, no. 9, pp. 3666–3672, 2015, doi: 10.1007/s11665-015-1648-1.

F. Pravdic, H. Kaufmann, C. Wögerer, G. Traxler, and H. Hubbauer, “Vertical Direct Chill Casting of Magnesium Alloys - Especially for Extrusion Billet,” Light Met. Age, vol. 61, no. 9–10, pp. 28–31, 2003.

C. Wang, S. Huo, S. Liu, Q. Hu, Q. Zhang, and Z. Liu, “Recycle of magnesium alloy scrap for improving fire resistance , thermal stability , and water tolerance of intumescent fire-retardant coatings,” J. Coatings Technol. Res., vol. 18, no. 2, pp. 447–458, 2021, doi: 10.1007/s11998-020-00413-5.

T. Hiraki, O. Takeda, K. Nakajima, K. Matsubae, S. Nakamura, and T. Nagasaka, “Thermodynamic criteria for the removal of impurities from end-of-life magnesium alloys by evaporation and flux treatment,” Sci. Technol. Adv. Mater., vol. 12, no. 3, 2011, doi: 10.1088/1468-6996/12/3/035003.

U. S. Geological Survey, Mineral Commodity Summaries 2023: U.S. Geological Survey. USGS Science for a Changing World, 2023. doi: https://doi.org/10.3133/mcs2023.

H. Hao, “Casting Technology and Quality Improvement of Magnesium Alloys,” in Special Issues on Magnesium Alloys, W. Menteiro, Ed. Dalian University of Technology, China: InTech, 2011, p. 128. doi: 10.5772/19877.

W. Hu, Q. Le, Z. Zhang, L. Bao, and J. Cui, “Numerical simulation of DC casting of AZ31 magnesium slab at different casting speeds,” J. Magnes. Alloy., vol. 1, no. 1, pp. 88–93, 2013, doi: 10.1016/j.jma.2013.02.010.

H. M. Ji, T. J. Luo, C. Wang, J. Cui, and Y. S. Yang, “Direct chill casting of magnesium alloy under pulsed magnetic field,” Mater. Sci. Technol. (United Kingdom), vol. 33, no. 1, pp. 33–39, 2017, doi: 10.1080/02670836.2016.1157948.

A. A. Luo, “Magnesium casting technology for structural applications,” J. Magnes. Alloy., vol. 1, no. 1, pp. 2–22, 2013, doi: 10.1016/j.jma.2013.02.002.

D. Mackie, “Characterisation of casting defects in DC cast magnesium alloys,” University of Manchester, 2013.

Y. Niu, Y. Shi, Q. Le, Y. Wang, S. Ren, and N. Wang, “Low frequency electromagnetic casting of large size za21 magnesium alloy slab ingot,” J. Phys. Conf. Ser., vol. 2011, no. 1, pp. 0–5, 2021, doi: 10.1088/1742-6596/2011/1/012085.

D. Mackie, J. D. Robson, P. J. Withers, and M. Turski, “Characterisation and modelling of defect formation in direct-chill cast AZ80 alloy,” Mater. Charact., vol. 104, pp. 116–123, 2015, doi: 10.1016/j.matchar.2015.03.033.

McGlade, “Bleed out detector for direct chill casting,” vol. 1, no. 12, 2001.

T. Subroto, A. Miroux, D. Mortensen, M. M’Hamdi, D. G. Eskin, and L. Katgerman, “Semi-quantitative predictions of hot tearing and cold cracking in aluminum DC casting using numerical process simulator,” IOP Conf. Ser. Mater. Sci. Eng., vol. 33, no. 1, 2012, doi: 10.1088/1757-899X/33/1/012068.

B. T. Sofyan, Pengantar Material Teknik, Edisi Kedu. Bogor, Jawa Barat: UNHAN RI PRESS, 2021. [Online]. Available: http://www.nber.org/papers/w16019

R. Pelayo, “Direct Chill and Fusion Casting of Aluminum Alloys,” University of Waterloo, 2012.

X. Zheng, P. Luo, J. Dong, and W. Ding, “Effect of direct chill casting process parameters on the microstructure and macrosegregation of Mg-Al-Zn ingot,” Mater. Trans., vol. 58, no. 8, pp. 1197–1202, 2017, doi: 10.2320/matertrans.M2017013.

X. Zheng, J. Dong, and S. Wang, “Microstructure and mechanical properties of Mg-Nd-Zn-Zr billet prepared by direct chill casting,” J. Magnes. Alloy., vol. 6, no. 1, pp. 95–99, 2018, doi: 10.1016/j.jma.2018.01.003.

P. V. Sai Divya, P. K. Penumakala, and A. K. Nallathambi, “Influence of secondary cooling strategies on thermal gradients in the direct chill casting of magnesium alloys,” J. Therm. Anal. Calorim., vol. 147, no. 1, pp. 203–218, 2022, doi: 10.1007/s10973-020-10235-7.

R. Wang, Y. Zuo, Q. Zhu, X. Liu, and J. Wang, “Effect of temperature field on the porosity and mechanical properties of 2024 aluminum alloy prepared by direct chill casting with melt shearing,” J. Mater. Process. Technol., vol. 307, no. December 2021, p. 117687, 2022, doi: 10.1016/j.jmatprotec.2022.117687.

D. D. Sutedjo and S. Tjitro, “Analisis Kecepatan Bottom Block Terhadap Struktur Mikro Produk Direct Chill Casting,” J. Tek. Mesin, vol. 6, no. 2, pp. 35–38, 2004, [Online]. Available: http://puslit2.petra.ac.id/ejournal/index.php/mes/article/view/16210

B. Arifvianto et al., “Recycling of Magnesium Alloy Scrap by Remelting and Chemical De-coating Process,” Metall. Mater. Eng., vol. 29, no. 4, pp. 33–42, 2023, doi: 10.56801/MME1014.

T. Truglas et al., “Correlative characterization of Zn-Al-Mg coatings by electron microscopy and FIB tomography,” Mater. Charact., vol. 166, no. June, p. 110407, 2020, doi: 10.1016/j.matchar.2020.110407.

A. Kiełbus, R. Jarosz, and A. Gryc, “Effect of modification on microstructure and properties of AZ91 magnesium alloy,” Crystals, vol. 10, no. 6, pp. 1–10, 2020, doi: 10.3390/cryst10060536.

Refbacks

  • There are currently no refbacks.