RAMS of Railway Infrastructure A Review

Rachmad Indrakusuma, Yunendar Aryo Handoko

Abstract

RAMS is crucial for assuring the correct functioning of railway transportation, which is a critical mode of transit for both passengers and products. The paper provides a comprehensive overview of the components and theory of RAMS and highlights commonly used methods in each discipline. The benefits and sustainability of RAMS and complementary disciplines such as Life Cycle Cost (LCC) are also discussed. The integration of RAMS and LCC can provide railway companies and passengers with numerous benefits. The RAMS methodology consists of four essential components: availability, maintainability, safety management, and reliability. While implementing RAMS, businesses must consider potential obstacles such as limited data and resources. To foster an environment conducive to RAMS implementation, businesses need government and industry support. Future research must be conducted on optimizing assets across the entire railway system, and RAMS and LCC requirements must be digitized within the asset system.

Keywords

Infrastructure, Life Cycle Cost, Railway, RAMS

Full Text:

PDF

References

D. den Hertog, J. I. van Zante-de Fokkert, S. A. Sjamaar, and R. Beusmans, “Optimal working zone division for safe track maintenance in The Netherlands,” Accid. Anal. Prev., vol. 37, no. 5, pp. 890–893, Sep. 2005, doi: 10.1016/j.aap.2005.04.006.

S. M. Famurewa, M. Asplund, M. Rantatalo, A. Parida, and U. Kumar, “Maintenance analysis for continuous improvement of railway infrastructure performance,” Struct. Infrastruct. Eng., vol. 11, no. 7, pp. 957–969, Jul. 2015, doi: 10.1080/15732479.2014.921929.

J. Vatn and T. Aven, “An approach to maintenance optimization where safety issues are important,” Reliab. Eng. Syst. Saf., vol. 95, no. 1, pp. 58–63, Jan. 2010, doi: 10.1016/j.ress.2009.06.002.

EN 50126-2-2017, BSI Standards Publication Railway Applications-The Specification and Demonstration of Reliability, Availability, Maintainability and Safety (RAMS), vol. Vol. 2. 2017.

M. Szkoda and G. Kaczor, “RAMS analysis of railway vehicles lifecycle,” J. KONBiN, vol. 41, no. 1, pp. 83–106, Mar. 2017, doi: 10.1515/jok-2017-0005.

S. N. Indonesia and B. S. Nasional, “Aplikasi perkeretaapian – Spesifikasi dan demonstrasi RAMS ( reliability , availability , maintainability and safety ),” vol. 2002, 2019.

Paul N. Edwards, Infrastructure and Modernity: Force, Time, and Social Organization in the History of Sociotechnical Systems. Citeseer, 2003. [Online]. Available: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=ecd4a82d57bc29c63bb72c734e80cca76b47e41a

M. F. Ibrahim, “Improvements and integration of a public transport system: the case of Singapore,” Cities, vol. 20, no. 3, pp. 205–216, Jun. 2003, doi: 10.1016/S0264-2751(03)00014-3.

T. Lidén, “Railway Infrastructure Maintenance - A Survey of Planning Problems and Conducted Research,” Transp. Res. Procedia, vol. 10, pp. 574–583, 2015, doi: 10.1016/j.trpro.2015.09.011.

E. Nathanail, “Framework for Monitoring and Assessing Performance Quality of Railway Network Infrastructure: Hellenic Railways Case Study,” J. Infrastruct. Syst., vol. 20, no. 4, Dec. 2014, doi: 10.1061/(ASCE)IS.1943-555X.0000198.

J. Parbo, O. A. Nielsen, and C. G. Prato, “Passenger Perspectives in Railway Timetabling: A Literature Review,” Transp. Rev., vol. 36, no. 4, pp. 500–526, Jul. 2016, doi: 10.1080/01441647.2015.1113574.

C. Walford, “Wind turbine reliability :understanding and minimizing wind turbine operation and maintenance costs.,” Albuquerque, NM, and Livermore, CA (United States), Mar. 2006. doi: 10.2172/882048.

U. C. Ehlers, E. O. Ryeng, E. McCormack, F. Khan, and S. Ehlers, “Assessing the safety effects of cooperative intelligent transport systems: A bowtie analysis approach,” Accid. Anal. Prev., vol. 99, pp. 125–141, Feb. 2017, doi: 10.1016/j.aap.2016.11.014.

P. Singh, Z. Elmi, V. Krishna Meriga, J. Pasha, and M. A. Dulebenets, “Internet of Things for sustainable railway transportation: Past, present, and future,” Clean. Logist. Supply Chain, vol. 4, p. 100065, Jul. 2022, doi: 10.1016/j.clscn.2022.100065.

A. P. Patra and U. Kumar, “Availability analysis of railway track circuits,” Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit, vol. 224, no. 3, pp. 169–177, May 2010, doi: 10.1243/09544097JRRT296.

W. Qingfeng, L. Wenbin, Z. Xin, Y. Jianfeng, and Y. Qingbin, “Development and application of equipment maintenance and safety integrity management system,” J. Loss Prev. Process Ind., vol. 24, no. 4, pp. 321–332, Jul. 2011, doi: 10.1016/j.jlp.2011.01.008.

G.sciutto, “Safety and Security in Railway Engineering.”

A. I. Pirvan, G. C. Patru, D. C. Tranca, C. Contasel, and D. Rosner, “Infrastructure independent rail quality diagnosis and monitoring system,” in 2019 18th {RoEduNet} {Conference}: Networking in {Education} and {Research} ({RoEduNet}), 2019. doi: 10.1109/roedunet.2019.8909602.

B. Indraratna, M. Babar Sajjad, T. Ngo, A. Gomes Correia, and R. Kelly, “Improved performance of ballasted tracks at transition zones: A review of experimental and modelling approaches,” Transp. Geotech., vol. 21, p. 100260, Dec. 2019, doi: 10.1016/j.trgeo.2019.100260.

B. Indraratna, Q. Sun, and J. Grant, “Behaviour of subballast reinforced with used tyre and potential application in rail tracks,” Transp. Geotech., vol. 12, pp. 26–36, Sep. 2017, doi: 10.1016/j.trgeo.2017.08.006.

G. Du and R. Karoumi, “Life cycle assessment of a railway bridge: comparison of two superstructure designs,” Struct. Infrastruct. Eng., vol. 9, no. 11, pp. 1149–1160, Nov. 2013, doi: 10.1080/15732479.2012.670250.

K. Kwon and D. M. Frangopol, “Bridge fatigue reliability assessment using probability density functions of equivalent stress range based on field monitoring data,” Int. J. Fatigue, vol. 32, no. 8, pp. 1221–1232, Aug. 2010, doi: 10.1016/j.ijfatigue.2010.01.002.

X. Fang, Y. B. Tang, L. Chen, and H. H. Li, “Embedded Durability Monitoring System – A Key Part of Ensuring the Service Life of the Hong Kong-Zhuhai-Macao Bridge,” Appl. Mech. Mater., vol. 738–739, pp. 294–298, Mar. 2015, doi: 10.4028/www.scientific.net/AMM.738-739.294.

J. Hwang and H. Jo, “RAMS management and assessment of railway signaling system through RAM and safety activities,” in 2008 International Conference on Control, Automation and Systems, Oct. 2008, pp. 892–895. doi: 10.1109/ICCAS.2008.4694619.

Q. Mahboob and E. Zio, Handbook of RAMS in Railway Systems. Boca Raton : Taylor & Francis, CRC Press, 2018.: CRC Press, 2018. doi: 10.1201/b21983.

M. H. F. Aly, H. Hemeda, and M. A. El-sayed, “Computer applications in railway operation,” Alexandria Eng. J., vol. 55, no. 2, pp. 1573–1580, Jun. 2016, doi: 10.1016/j.aej.2015.12.028.

T. Kara and M. Cengiz Savas, “Design and Simulation of a Decentralized Railway Traffic Control System,” Eng. Technol. Appl. Sci. Res., vol. 6, no. 2, pp. 945–951, Apr. 2016, doi: 10.48084/etasr.631.

J. Wang, J. Wang, C. Roberts, and L. Chen, “Parallel Monitoring for the Next Generation of Train Control Systems,” IEEE Trans. Intell. Transp. Syst., vol. 16, no. 1, pp. 330–338, Feb. 2015, doi: 10.1109/TITS.2014.2332160.

G. Caimi, M. Fuchsberger, M. Laumanns, and M. Lüthi, “A model predictive control approach for discrete-time rescheduling in complex central railway station areas,” Comput. Oper. Res., vol. 39, no. 11, pp. 2578–2593, Nov. 2012, doi: 10.1016/j.cor.2012.01.003.

S. Yi, H. Wang, Y. Ma, F. Xie, P. Zhang, and L. Di, “A Safety-Security Assessment Approach for Communication-Based Train Control (CBTC) Systems Based on the Extended Fault Tree,” in 2018 27th International Conference on Computer Communication and Networks (ICCCN), Jul. 2018, pp. 1–5. doi: 10.1109/ICCCN.2018.8487464.

G. Santos, H. Behrendt, and A. Teytelboym, “Part II: Policy instruments for sustainable road transport,” Res. Transp. Econ., vol. 28, no. 1, pp. 46–91, Jan. 2010, doi: 10.1016/j.retrec.2010.03.002.

D. Cantero, T. Arvidsson, E. OBrien, and R. Karoumi, “Train–track–bridge modelling and review of parameters,” Struct. Infrastruct. Eng., vol. 12, no. 9, pp. 1051–1064, Sep. 2016, doi: 10.1080/15732479.2015.1076854.

J. Wei, C. Liu, T. Ren, H. Liu, and W. Zhou, “Online Condition Monitoring of a Rail Fastening System on High-Speed Railways Based on Wavelet Packet Analysis,” Sensors, vol. 17, no. 2, p. 318, Feb. 2017, doi: 10.3390/s17020318.

X. Liu, V. L. Markine, H. Wang, and I. Y. Shevtsov, “Experimental tools for railway crossing condition monitoring (crossing condition monitoring tools),” Measurement, vol. 129, pp. 424–435, Dec. 2018, doi: 10.1016/j.measurement.2018.07.062.

G. Jing, X. Qin, H. Wang, and C. Deng, “Developments, challenges, and perspectives of railway inspection robots,” Autom. Constr., vol. 138, p. 104242, Jun. 2022, doi: 10.1016/j.autcon.2022.104242.

W. Li, H. Pu, P. Schonfeld, H. Zhang, and X. Zheng, “Methodology for optimizing constrained 3-dimensional railway alignments in mountainous terrain,” Transp. Res. Part C Emerg. Technol., vol. 68, pp. 549–565, Jul. 2016, doi: 10.1016/j.trc.2016.05.010.

A. K. Agrawal, V. M. S. R. Murthy, and S. Chattopadhyaya, “Investigations into reliability, maintainability and availability of tunnel boring machine operating in mixed ground condition using Markov chains,” Eng. Fail. Anal., vol. 105, pp. 477–489, Nov. 2019, doi: 10.1016/j.engfailanal.2019.07.013.

A. Crespo Marquez and J. N. D. Gupta, “Contemporary maintenance management: process, framework and supporting pillars,” Omega, vol. 34, no. 3, pp. 313–326, Jun. 2006, doi: 10.1016/j.omega.2004.11.003.

M. Catelani, L. Ciani, G. Guidi, and G. Patrizi, “Maintainability improvement using allocation methods for railway system,” ACTA IMEKO, vol. 9, no. 1, p. 10, Mar. 2020, doi: 10.21014/acta_imeko.v9i1.733.

Z. Huang et al., “Resilience assessment of tunnels: Framework and application for tunnels in alluvial deposits exposed to seismic hazard,” Soil Dyn. Earthq. Eng., vol. 162, p. 107456, Nov. 2022, doi: 10.1016/j.soildyn.2022.107456.

C. Du, S. Dutta, P. Kurup, T. Yu, and X. Wang, “A review of railway infrastructure monitoring using fiber optic sensors,” Sensors Actuators A Phys., vol. 303, p. 111728, Mar. 2020, doi: 10.1016/j.sna.2019.111728.

A. T. AKS Jardine, Maintenance, Replacement, and Reliability: Theory and Applications. CRC Press, 2021.

Wollny S., “Reliability , Availability , Maintainability , Safety (RAMS) and Life Cycle Costs (LCC),” Eastern-European Journal of Enterprise Technologies, 2017. http://www.otp.go.th/uploads/tiny_uploads/Public/2560/04-April/10-25590915-EuropeRailStandard.pdf

M. Modarres, M. P. Kaminskiy, and V. Krivtsov, Reliability Engineering and Risk Analysis. 2009. doi: 10.1201/9781420008944.

Michiel Vromans, Reliability of Railway Systems. 2005.

D. W. B. Roger W. Berger, The Certified Quality Engineer Handbook. 2001.

P. D. Athanasios Gerokostopoulos, Huairui Guo, Ph. D. & Edward Pohl, “Determining the Right Sample Size for Your Test: Theory and Application,” Annual RELIABILITY and MAINTAINABILITY Symposium, pp. 1–22, 2015, [Online],” 2015. available: https://www.weibull.com/pubs/2015_RAMS_right_sample_size.pdf

HBM Prenscia, “Life Data Analysis (Weibull Analysis),” HOTTINGER BRUEL & KJAER INC, 2021. https://www.weibull.com/basics/lifedata.htm

Ahmad Kamal M. Nor, Srinivasa R. Pedapati, and Masdi Muhammad, “Reliability engineering applications in electronic, software, nuclear and aerospace industries: A 20 year review (2000--2020).”

Y. M. Jidayi, “Reliability Improvement of Railway Infrastructure,” MEng Thesis, no. March, 2015.

Y. Tian, Y. Wang, X. Jin, and Z. Huang, “Identifying explicit expression of response probability density of nonlinear stochastic system: Information-theoretic method,” Mech. Syst. Signal Process., vol. 143, p. 106839, Sep. 2020, doi: 10.1016/j.ymssp.2020.106839.

G. M. P. Simões, “RAMS analysis of railway track infrastructure,” 2008.

C. Stenström, A. Parida, and U. Kumar, “Measuring and monitoring operational availability of rail infrastructure,” Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit, vol. 230, no. 5, pp. 1457–1468, Jun. 2016, doi: 10.1177/0954409715592189.

G. Barone and D. M. Frangopol, “Life-cycle maintenance of deteriorating structures by multi-objective optimization involving reliability, risk, availability, hazard and cost,” Struct. Saf., vol. 48, pp. 40–50, May 2014, doi: 10.1016/j.strusafe.2014.02.002.

D. Cevasco, S. Koukoura, and A. J. Kolios, “Reliability, availability, maintainability data review for the identification of trends in offshore wind energy applications,” Renew. Sustain. Energy Rev., vol. 136, p. 110414, Feb. 2021, doi: 10.1016/j.rser.2020.110414.

M. A. Muhammed Nor, A. F. Yusop, M. A. Hamidi, M. N. Omar, N. A. A. Ha-Mid, and W. M. W. Mohamed, “Alternative Railway Tools and Sustainability in RAMS: A Review,” 2022.

M. Sedghi, O. Kauppila, B. Bergquist, E. Vanhatalo, and M. Kulahci, “A taxonomy of railway track maintenance planning and scheduling: A review and research trends,” Reliab. Eng. Syst. Saf., vol. 215, p. 107827, Nov. 2021, doi: 10.1016/j.ress.2021.107827.

Z. Su, A. Jamshidi, A. Núñez, S. Baldi, and B. De Schutter, “Integrated condition-based track maintenance planning and crew scheduling of railway networks,” Transp. Res. Part C Emerg. Technol., vol. 105, pp. 359–384, Aug. 2019, doi: 10.1016/j.trc.2019.05.045.

A. Consilvio, A. Di Febbraro, R. Meo, and N. Sacco, “Risk-based optimal scheduling of maintenance activities in a railway network,” EURO J. Transp. Logist., vol. 8, no. 5, pp. 435–465, Dec. 2019, doi: 10.1007/s13676-018-0117-z.

F. G. Praticò and M. Giunta, “An integrative approach RAMS-LCC to support decision on design and maintenance of rail track,” in 10th International Conference on Environmental Engineering, ICEE 2017, 2017. doi: 10.3846/enviro.2017.144.

N. B. N. Isha, “EFFECT ANALYSIS OF RELIABILITY, AVAILABILITY, MAINTAINABILITY AND SAFETY (RAMS) OF TRAIN OPERATION,” 2015.

J. Litherland, G. Calvert, J. Andrews, S. Modhara, and A. Kirwan, “An Alternative Approach to Railway RAMS: Development of an Extended RAMS Framework,” Infrastruct. Asset Manag., pp. 1–10, Feb. 2021, doi: 10.1680/jinam.20.00002.

Y. Wang, S. Y. M. Liu, L. Cho, K. Lee, and H. Tam, “A method of railway system safety analysis based on cusp catastrophe model,” Accid. Anal. Prev., vol. 151, p. 105935, Mar. 2021, doi: 10.1016/j.aap.2020.105935.

C. Liu, S. Yang, Y. Cui, and Y. Yang, “An improved risk assessment method based on a comprehensive weighting algorithm in railway signaling safety analysis,” Saf. Sci., vol. 128, p. 104768, Aug. 2020, doi: 10.1016/j.ssci.2020.104768.

F. Giammaria Praticò and M. Giunta, “An Integrative Approach RAMS-LCC to Support Decision on Design and Maintenance of Rail Track,” in Proccedings of 10th International Conference “Environmental Engineering,” Aug. 2017. doi: 10.3846/enviro.2017.144.

M. Sitarz, K. Chruzik, and R. Wachnik, “Aplication of RAMS and FMEA methods in safety management system of railway transport,” J. Konbin, vol. 24, no. 1, pp. 149–160, 2012, doi: 10.2478/jok-2013-0061.

D. Mulyasari, I. W. Suweca, and R. Setiawan, “Penerapan Metode Failure Mode, Effect And Criticality Analiysis (Fmeca) Pada Rem Mekanik Sub Komponen Alat Angkut Konveyor Rel,” Sist. J. Ilm. Nas. Bid. Ilmu Tek., vol. 7, no. 1, pp. 1–4, 2019, doi: 10.53580/sistemik.v7i1.4.

Z. Peng, Y. Lu, A. Miller, C. Johnson, and T. Zhao, “Risk Assessment of Railway Transportation Systems using Timed Fault Trees,” Qual. Reliab. Eng. Int., vol. 32, no. 1, pp. 181–194, Feb. 2016, doi: 10.1002/qre.1738.

PT. Kereta Api Indonesia (Persero), “BUKU PEGANGAN Systems Engineering dan Reliability , Availability , Maintainability dan Safety (RAMS) Teori dan Aplikasinya,” 2019.

M. A. Muhammed Nor, A. F. Yusop, M. A. Hamidi, M. N. Omar, N. A. A. Ha-Mid, and W. M. W. Mohamed, “Alternative Railway Tools and Sustainability in RAMS: A Review,” 2022. doi: 10.1007/978-981-19-1577-2_40.

J. J. A. Van Den Breemer, S. H. S. Al-Jibouri, K. T. Veenvliet, and H. W. N. Heijmans, “RAMS and LCC in the design process of infrastructural construction projects: an implementation case.”

I. Ansori, “Analisis Reliability Availability Maintainability Safety (RAMS) dan Life Cycle Cost (LCC) Kereta Cepat Indonesia,” 2022.

C. Parra, “Review of the basic processes of a Maintenance and Reliability Management Model PROJECT: Design and Construction of the Third Set of Locks in the ACP Optimización de la Gestión del Mantenimiento y Análisis crítico de Indicadores de Benchmarking bajo el enfoque integral de la Gestión de Activos (ISO 55000). View project Optimización de la Gestión del Mantenimiento y Análisis crítico de Indicadores de Benchmarking bajo el enfoque integral de la Gestión de Activos (ISO 55000). View project,” 2015, doi: 10.13140/RG.2.2.16830.10566.

B. Ripke, Guideline for LCC and RAMS analysis. 2006.

M. Satora and M. Szkoda, “Method for effectiveness assessment of rolling stock investments using LCC (Life Cycle Cost) analysis,” Transp. Econ. Logist., vol. 80, pp. 217–224, Dec. 2018, doi: 10.26881/etil.2018.80.22.

A. Zoeteman, “Life cycle cost analysis for managing rail infrastructure: Concept of a decision support system for railway design and maintenance,” Eur. J. Transp. Infrastruct. Res., 2001, doi: https://doi.org/10.18757/ejtir.2001.1.4.3506.

B. Ripke and W. Nawabi, “RAMS and LCC for railway infrastructure Part 4-Combined RAMS and LCC analyses Railway system Traffic control center Infra-structure Sub structure Permanent way Ballast Sleeper Fastening Rail Joint … Switches and crossings … Rolling stock,” 2014.

Refbacks

  • There are currently no refbacks.