

Application Of Stepping Stone And Simplex Methods For Planting Optimization With Topsis As A Determining Criteria

Rudi Hartono, Lukmandono*

Master of Industrial Engineering, Faculty of Industrial Technology, Institut Teknologi Adhi Tama Surabaya
Email: lukmandono@itats.ac.id

DOI: <https://doi.org/10.31284/j.jtm.2026.v7i1.8266>

Received September 23rd 2025; Received in revised December 16th 2025; Accepted December 16th 2025;
Available online January 30th 2026

Copyright: ©2026 Rudi Hartono, Lukmandono

License URL: <https://creativecommons.org/licenses/by-sa/4.0>

Abstract

Wonorejo Surabaya Nursery plays a strategic role in supporting urban green open spaces, which requires effective plant selection, resource allocation, and distribution planning. This study aims to develop an integrated decision-support model combining the TOPSIS method for multi-criteria plant selection, the Simplex method for resource allocation optimization, and the Stepping Stone method for distribution cost minimization. The data used in this study consist of four plant alternatives and five evaluation criteria obtained from field observations, operational records, and expert judgment at the Wonorejo Nursery. The results of the study show four priority plants, namely Bromeliad (0.47487), Gandasuli (0.46952), Spiderlili (0.45214), and Adam Hawa (0.59221). These results are subsequently used as the objective function in the Simplex model under constraints related to land, water, labor, working hours, and compost availability. The Z max value is 23.668 with the Adam Hawa decision variable value of 40. The findings demonstrate that the integrated model improves decision consistency, resource efficiency, and distribution cost effectiveness. the Stepping Stone method, resulting in an efficiency of 0.88%. This approach can serve as a practical framework for urban nursery management and sustainable green infrastructure planning.

Keywords: Planting Optimization, Simplex, Stepping Stone, TOPSIS, Wonorejo Seed Garden

1. Introduction

Urban green spaces are essential for sustainable city ecosystems, offering ecological, aesthetic, and health benefits[1], [2]. Kebun Bibit Wonorejo Surabaya plays a key role in supporting these efforts through the cultivation and distribution of plants for reforestation and urban greening[3], [4]. However, the nursery faces challenges in selecting the right plant species, allocating limited resources, and optimizing distribution to various city districts[5], [6], [7].

This study proposes an integrated optimization model combining the TOPSIS method for plant selection, the Simplex method for optimal resource allocation, and the Stepping Stone method for efficient distribution[8], [9], [10]. TOPSIS ranks plant alternatives based on multiple criteria such as growth rate, resilience, and ecological value[11]. Simplex is applied to determine the best allocation of land, water, labor, and compost[12], while Stepping Stone is used to minimize distribution costs[13].

In practical nursery management, decision-making does not occur in isolated stages. The selection of plant species based on multiple criteria directly affects resource utilization and distribution efficiency. A plant prioritized through multi-criteria decision-making may require specific land areas, water volumes, labor intensity, and logistics capacity. Therefore, separating plant selection from resource allocation and distribution optimization can lead to suboptimal or infeasible implementation. Integrating multi-criteria selection (TOPSIS), resource optimization (Simplex), and distribution optimization (Stepping Stone) ensures that strategic decisions at the selection stage are consistent with operational constraints and logistical realities. This integrated approach allows decision-makers to simultaneously consider ecological priorities, resource limitations, and transportation efficiency within a single coherent decision-support framework. Unlike previous studies that address these issues separately, this research integrates all three methods into a unified framework, offering a

comprehensive decision support tool[14]. The approach is tested on Kebun Bibit Wonorejo and aims to improve operational efficiency, reduce costs, and enhance decision-making[15].

The integration of MCDM and optimization methods in a real-world nursery context contributes to both theory and practice, particularly in managing green infrastructure in urban environments[16].

2. Methods

(1). TOPSIS for Plant Prioritization

The TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) method is used to prioritize plants based on five main criteria: growth rate, water use efficiency, resistance to extreme weather, aesthetic value, and ecological function. Plant alternatives are assessed based on these criteria and then formed into an initial decision matrix. The weighting of each criterion is determined based on input from experts and the garden management[17].

The TOPSIS process consists of five main steps: normalizing the decision matrix, weighting the values, determining the positive and negative ideal solutions, calculating the Euclidean distance to these two solutions, and calculating the closeness coefficient of each alternative to the ideal solution. The higher the CCI value, the more likely the plant is to be prioritized for planting[18].

In the context of nurseries and green spaces, this method is relevant because it can evaluate plant species based on a combination of criteria such as environmental resilience, water efficiency, and aesthetic value. TOPSIS has been widely applied in data-driven decision-support systems for multi-criteria evaluation problems (Afzal et al., 2024), extending its flexibility in handling uncertainty and qualitative preferences. These studies demonstrate that TOPSIS is a robust, flexible, and efficient method for supporting complex, multi-criteria-based alternative selection processes, as applied in this study to determine the best plant priorities at the Wonorejo Nursery Garden.

(2). Simplex for Resource Allocation

The Simplex method is a cornerstone of linear programming, widely used in industrial and agricultural applications where multiple constraints interact with a single optimization objective. Originally developed by Dantzig (1947), it allows decision-makers to identify optimal solutions through systematic iteration over feasible solutions. In agriculture, it is often used to determine the best mix of crops or livestock given land, labor, and input constraints[19].

In nursery management, the Simplex method offers a powerful tool to model planting plans by translating real constraints (e.g., available land, water usage, manpower) into linear inequalities. The objective function—whether maximizing profit, yield, or plant priority—guides the algorithm toward the best combination of plants that can be cultivated within available resources. Tools like QM for Windows and Excel Solver are commonly used to apply Simplex in real-world problems due to their ability to handle multiple variables simultaneously [20].

Recent studies, such as those by Lozano Medina et al. (2024), highlight the importance of applying Simplex in multi-resource environments, especially where cost-effectiveness and sustainability intersect. In the context of this study, Simplex is used not to maximize financial profit but to prioritize planting based on ecological value and strategic needs, aligning with the broader environmental goals of urban forestry programs [15].

(3). Stepping Stone Method in Transportation Optimization

The Stepping Stone method is traditionally used to refine transportation plans in logistics and distribution networks. It works by evaluating empty cells in a transportation table to detect potential reductions in total cost. The method forms closed loops from unallocated routes and tests them for improvement by shifting allocations along the loop path[21].

In nursery operations, especially those distributing to multiple city districts like Kebun Bibit Wonorejo, transportation cost becomes a significant part of operational efficiency. Each plant species needs to be delivered to its designated planting area with minimal logistics expenditure. The Stepping Stone method ensures that all planting zones receive their required allocations without incurring

excess distribution costs[22]. This method has proven efficient for application in structured distribution systems with fixed demand patterns but limited supply sources. Therefore, Stepping Stone becomes a strategic tool in supporting logistical efficiency and the smooth implementation of urban greening programs in a systematic and measurable manner.

Several studies—Biomej et al. (2024), Annisa & Mardiningsih (2021)—have successfully applied this method to real-world supply chain problems. These applications highlight the method's strength in iteratively improving upon basic feasible solutions, such as those generated by the Northwest Corner method, and identifying more cost-efficient alternatives. In this study, Stepping Stone ensures that the post-optimization planting plan is not only resource-efficient but also logically viable[23].

3. Results and Discussion

Data Sources and Computational Tools

The data used in this study were obtained from operational records, direct field observations, and expert judgment at the Wonorejo Nursery Garden, Surabaya. The dataset includes four plant alternatives (Bromeliad, Gandasuli, Spiderlily, and Adam and Eve plants) and five evaluation criteria related to plant characteristics and operational requirements. Resource constraint data, such as land availability, water usage, labor capacity, working hours, and compost availability, were collected from daily operational reports of the nursery.

The TOPSIS calculations were performed manually to ensure transparency and traceability of each computational step. The Simplex optimization model was solved using QM for Windows version 5 software to validate manual calculations and obtain the optimal solution efficiently. The transportation optimization using the Stepping Stone method was carried out through iterative tabulation based on standard transportation problem procedures.

(1). Analisis TOPSIS

In this study, the calculation stages using the TOPSIS method are as follows:

1. Problem Identification
2. Decision Matrix Construction
3. Decision Matrix Normalization (R_{ij})
4. Determining the Positive Ideal Solution (A^+) and the Negative Ideal Solution (A^-)
5. Calculating the Distance to the Positive and Negative Ideal Solutions
6. Determining the Preference Value (V_i)

In a structured manner it will be discussed as below:

(a). Problem Identification

The plants to be evaluated are Bromeliads, Gandasuli, Spiderlilies, and Adam and Eve. The decision-making process considers five main criteria:

Table 1. Criteria Weight

Unit	Criteria	Code
C1	Plant Age	Month
C2	Water Consumption Requirements	Liters/Week
C3	Economic Value	Rp/ Bag Plants
C4	Ease of Maintenance	1-5
C5	Weather Adaptability	1-5

So the weight conversion value is as follows:

Table 2. Conversion of Criteria Weight Values

Alternative	C1	C2	C3	C4	C5
Bromelia	6	20	15.000	3	4
Gandasuli	4	30	12.000	4	5

Spiderlili	12	20	8.000	5	5
Adam Hawa	8	35	13.000	3	3

For each of the other alternatives, the normalized decision matrix can be calculated. The overall squared value is shown in the following table.

Table 3. Square Values

Alternative	C1	C2	C3	C	
				4	5
			22		
Bromelia	36	400	5	9	16
			14		
Gandasuli	16	900	4	16	25
			14		
Spiderlili	4	400	64	25	25
Adam		122	16		
Hawa	64	5	9	9	9

(b). Summing the squares of each criterion

The resulting squares will then be added together, so that $C1 = 36+16+144+64 = 260$

The square root for each criterion is: $C1 = \sqrt{260} = 16.12$

The complete results of the square root for each criterion are as follows:

Table 4. Sum of Squares and Square Roots

	C1	C2	C3	C4	C5
Sum					
Squared	260	2925	602	59	75
	16.1	54.0	24.5	7.6	8.6
Square root	2	8	4	8	6

(c). Decision Matrix Normalization () Decision Matrix Normalization Table

The normalization matrix (R_{ij}) is obtained by dividing each value in the decision matrix by the square root of the sum of all the values in its column, then multiplying it by the weight of each criterion.

$$R_{11} = X_{11} / \text{square root (C1)}$$

$$= 6 / 16.12 = 0.372104$$

$$R_{21} = X_{21} / \text{square root (C1)}$$

$$= 4 / 16.12 = 0.248069$$

The complete table will be presented as follows:

Table 5. Decision Matrix Normalization Table

0.37210		0.61135	0.39056	0.4618
4	0.3698	4	7	8
0.24806		0.48908	0.52075	0.5773
9	0.5547	3	6	5
0.74420		0.32605	0.65094	0.5773
8	0.3698	6	5	5
0.49613	0.6471		0.39056	0.3464
9	5	0.52984	7	1

(d). Weighted Normalized Decision Matrix

The Weighted Normalized Decision Matrix is a matrix derived from the weights of each criterion multiplied by the normalized decision matrix.

With the formula $V_i = W_i * R_{ij}$

The weights for each criterion are as follows:

C1	C2	C3	C4	C5
0.15	0.25	0.3	0.15	0.15

So that

$$V_{11} = W_1 * C_{11} = 0.372104 * 0.15 = 0.055816$$

$$V_{12} = W_2 * C_{11} = 0.36980 * 0.25 = 0.09245$$

$$V_{13} = W_3 * C_{11} = 0.611354 * 0.30 = 0.183406$$

$$V_{14} = W_4 * C_{11} = 0.390567 * 0.15 = 0.058585$$

$$V_{15} = W_5 * C_{11} = 0.46188 * 0.15 = 0.069282$$

The following is the complete Decision Normalization Matrix (V_{ij}) as follows:

Table 6. Nilai Weighted Normalized Decision Matrix

Alternative	C1	C2	C3	C4	C5
	0.05581		0.18340	0.05858	0.06928
Bromelia	6	0.09245	6	5	2
		0.13867	0.14672	0.07811	0.08660
Gandasuli	0.03721	5	5	3	3
	0.11163		0.09781	0.09764	0.08660
Spiderlili	1	0.09245	7	2	3
Adam	0.07442	0.16178	0.15895	0.05858	0.05196
Hawa	1	8	2	5	2

(e). Determine the positive ideal solution and the negative ideal solution.

The positive ideal solution is the value closest to 1 and is considered the best condition, while the negative ideal solution is the value closest to 0 and reflects the worst condition.

$$A_1^+ = \max \{0.055816; 0.03721; 0.111631; 0.074421\} = 0.111631 \text{ and so on up to } A_5^+.$$

$$A_1^- = \min \{0.055816; 0.03721; 0.111631; 0.074421\} = 0.03721 \text{ and so on up to } A_5^-.$$

The following table presents the positive and negative ideal solution values for each criterion.

Table 7. Positive and Negative Ideal Solutions

	Maks Vj+	Maks Vj-
A		
1	0.111631	0.03721
A		
2	0.161788	0.09245
A		
3	0.183406	7
A		
4	0.097642	5
A		
5	0.05196	2
	0.086603	

(f). Calculating Separation

Separation is the distance of an alternative from the ideal solution, either positive or negative, calculated using the Euclidean method. This method measures the distance between two points: the alternative value and the positive ideal solution (D^+) and the negative ideal solution (D^-).

$$S_{A1}^+ = \sqrt{(0.055816 - 0.111631)^2 + (0.09245 - 0.161788)^2 + \sqrt{(0.183406 - 0.183406)^2 + (0.058585 - 0.097642)^2 + \sqrt{(0.069282 - 0.086603)^2}}} = 0.098734496$$

$$S_{A2}^+ = 0.088314894$$

$$S_{A3}^+ = 0.11015114$$

$$S_{A4}^+ = 0.068615201$$

The distance to the negative-ideal solution is defined as follows:

$$S_{A1}^- = \sqrt{(0.055816 - 0.03721)^2 + (0.09245 - 0.09245)^2 + \sqrt{(0.183406 - 0.097817)^2 + (0.058585 - 0.058585)^2 + \sqrt{(0.069282 - 0.051962)^2}}} = 0.089284574$$

$$S_{A2}^- = 0.07816735$$

$$S_{A3}^- = 0.090905914$$

$$S_{A4}^- = 0.099648629$$

(g). Calculate the relative closeness to the ideal solution

The relative closeness to the ideal solution is the result of dividing the negative ideal solution by the sum of the positive and negative ideal solutions.

$$C_1^+ = \frac{0.089284574}{0.098734496 + 0.089284574} = 0.47486978$$

$$C_2^+ = \frac{0.07816735}{0.088314894 + 0.07816735} = 0.469523646$$

$$C_3^+ = \frac{0.090905914}{0.11015114 + 0.090905914} = 0.452139889$$

$$C_4^+ = \frac{0.099648629}{0.068615201 + 0.099648629} = 0.592216575$$

(h). Ranking

Order preferences from highest to lowest, or take the alternative with the highest score closest to 1. The resulting ranking of the best plant criteria is described in the table.

Alternative	Results	Ranking
Bromelia (A1)	0.47486978	2
Gandasuli (A2)	0.469523646	3
Spiderlili (A3)	0.452139889	4
Adam Hawa (A4)	0.592216575	1

(i). Results

Based on the ranking of values, the A4 (Adam Hawa) plant, with the highest value 0.592216575, is the best alternative.

Sensitivity Analysis

A sensitivity analysis was conducted conceptually to observe the robustness of the TOPSIS ranking with respect to changes in criteria weights. Several hypothetical scenarios were considered by increasing and decreasing the weights of key criteria such as water consumption (C2) and ecological value (C5). The analysis indicates that Adam and Eve (A4) consistently remains the top-ranked alternative under moderate weight variations, particularly due to its balanced performance across multiple criteria. Minor changes in ranking among Bromeliad, Gandasuli, and Spiderlily may occur when aesthetic value or maintenance ease weights are significantly increased. This suggests that the proposed model is relatively robust and reliable, while still flexible enough to accommodate policy-driven priority adjustments.

(2). Calculation with the Simplex Method

Based on the theoretical foundation and the problems explained, a conceptual framework can be developed to achieve an optimal solution. A conceptual framework is a systematic pattern of thinking used as the basis for providing temporary answers to research problems. This study includes four variables:

X_1 : Bromelia Plants

X_2 : Gandasuli Plant

X_3 : Spiderlily Plant

X_4 : Adam and Hawa Plant

(a). Decision Variables

The decision variables in this study can be explained as follows: X_1 : Bromeliad plants, X_2 : Gandasuli plants, X_3 : Spiderlily plants and X_4 : Adam and Hawa plants.

(b). Constraint Function

The constraint function shows the limitations that a company has. The limitations in this study are:

- 1) Availability of soil mixture (S1)
- 2) Availability of water (S2)
- 3) Number of workers (S3)
- 4) Personnel working hours (S4)
- 5) Availability of compost mixture (S5)

(c). Objective Function

In this study, the goal of the nursery is the total weight of the preferred quality of the planting allocation as calculated using the TOPSIS method, namely: X_1 : Bromeliad Plants, X_2 : Gandasuli Plants, X_3 : Spiderlilies and X_4 : Adam and Eve Plants. The maximum number is expressed in the number of plants (Bag).

The following details the limitations and material requirements for the plant nursery process.

- (1). Garden land available is a maximum of 500 m² with each individual's needs Bromelia 0.03 M²/ Bag, Gandasuli 0.07 M²/ Bag, Spiderlily 0.07 M²/ Bag, Adam Hawa 0.03 M²/ Bag
- (2). Maximum water requirement 5,000 liters/day with each individual's needs Bromelia 15 liter/ Bag, Gandasuli 20 liter/ Bag, Spiderlily 18 liter/ Bag, Adam Hawa 12 liter/ Bag
- (3). The maximum number of Task Force personnel is 15 with each individual's needs Bromelia 0.08 Person/ Bag, Gandasuli 0.10 Person/ Bag, Spiderlily 0.07 Person/ Bag, Adam Hawa 0.09 Person/ Bag
- (4). Maximum working hours of the Task Force are 8 hours/day with each individual's needs Bromelia 0.25 hours/ Bag, Gandasuli 0.5 hours/ Bag, Spiderlily 0.3 hours/ Bag, Adam Hawa 0.2 hours/ Bag
- (5). Compost is available for a maximum of 1,000 m² with each individual's needs Bromelia 0.06 hours/ Bag, Gandasuli 0.14 hours/ Bag, Spiderlily 0.14 hours/ Bag, Adam Hawa 0.10 hours/ Bag

The solution using the simplex method uses the following steps:

a. Determine the constraints of the problem.

$$\text{Garden Land} \quad 0,03 X_1 + 0,07 X_2 + 0,07 X_3 + 0,03 X_4 \leq 500$$

$$\text{Water} \quad 15 X_1 + 20 X_2 + 18 X_3 + 12 X_4 \leq 5.000$$

$$\text{Labor} \quad 0,08 X_1 + 0,10 X_2 + 0,07 X_3 + 0,09 X_4 \leq 15$$

$$\begin{array}{ll} \text{Working hours} & 0,25 X_1 + 0,5 X_2 + 0,3 X_3 + 0,2 X_4 \leq 8 \\ \text{Compost mix} & 0,06 X_1 + 0,14 X_2 + 0,14 X_3 + 0,10 X_4 \leq 1.000 \end{array}$$

b. Determine the objective function of the problem.

$$\text{Max } Z = 0.47486978X_1 + 0.469523646X_2 + 0.452139889X_3 + 0.592216575X_4$$

c. Change the inequality (\leq) to (=) by adding a slack variable and a dummy variable for the inequality (\geq) to the left side of the constraint.

$$0,03 X_1 + 0,07 X_2 + 0,07 X_3 + 0,03 X_4 + S_1 = 500$$

$$15 X_1 + 20 X_2 + 18 X_3 + 12 X_4 + S_2 = 5.000$$

$$0,08 X_1 + 0,10 X_2 + 0,07 X_3 + 0,09 X_4 + S_3 = 15$$

$$0,25 X_1 + 0,5 X_2 + 0,3 X_3 + 0,4 X_4 + S_4 = 8$$

$$0,06 X_1 + 0,14 X_2 + 0,14 X_3 + 0,10 X_4 + S_5 = 1.000$$

$$Z = 0.47486978X_1 + 0.469523646X_2 + 0.452139889X_3 + 0.592216575X_4 + S_1 +$$

$$S_2 + S_3 + S_4 + S_5$$

$$Z - 0.47486978X_1 - 0.469523646X_2 - 0.452139889X_3 - 0.592216575X_4 - S_1 - S_2 - S_3 - S_4 - S_5 = 0$$

d. Create a simplex table by entering all the coefficients of the decision variables and the slack variables.

Table 9. Initial Simplex Table

VD	Z	X_1	X_2	X_3	X_4	S_1	S_2	S_3	S_4	S_5	NK
Z	1	-0.4749	-0.4695	-0.4521	-0.5922	0	0	0	0	0	0
S_1	0	0,03	0,07	0,07	0,03	1	0	0	0	0	500
S_2	0	15	20	18	12	0	1	0	0	0	5.000
S_3	0	0,08	0,10	0,07	0,09	0	0	1	0	0	15
S_4	0	0,25	0,5	0,3	0,4	0	0	0	1	0	8
S_5	0	0,06	0,14	0,14	0,10	0	0	0	0	1	1.000

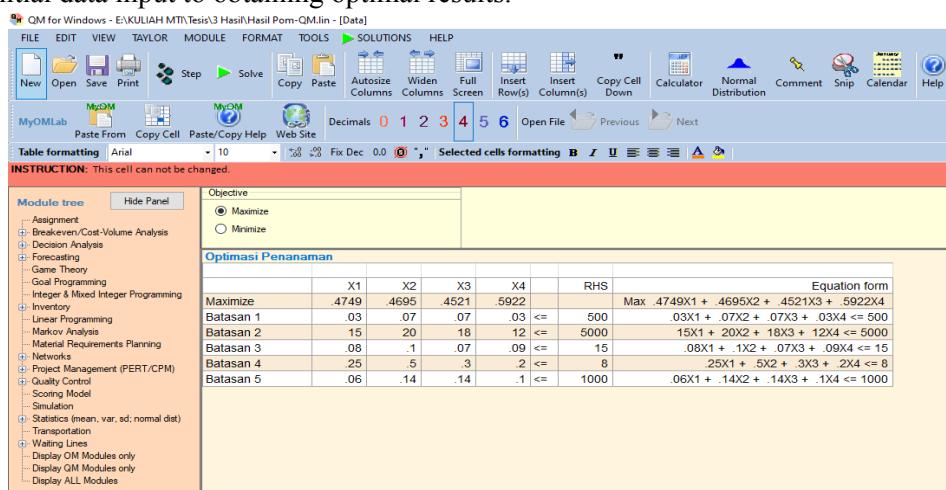
e. Next, iterate to find the maximum Z value. The results of the iteration calculation will produce a new table.

Table 10. Basic Row Operations

VD	Z	X1	X2	X3	X4	S1	S2	S3	S4	S5	RHS	Ratio
Z	1	-0.4749	-0.4695	-0.4521	-0.5922	0	0	0	0	0	0	
S_1	0	0,03	0,07	0,07	0,03	1	0	0	0	0	500	16.667
S_2	0	15	20	18	12	0	1	0	0	0	5.000	416,67
S_3	0	0,08	0,10	0,07	0,09	0	0	1	0	0	15	166,67
S_4	0	0,25	0,5	0,3	0,2	0	0	0	1	0	8	40,00
S_5	0	0,06	0,14	0,14	0,10	0	0	0	0	1	1.000	10.000

Table 11. Simplex Model Iteration 1

V	D	Z	X1	X2	X3	X ₄	S ₁	S ₂	S ₃	S ₄	S ₅	RHS
-0.592			0.2653		0.436							23.68
2	Z	1	5	1.011	2	0	0	0	0	2.961	0	8
0.03		S_1	0	-0.0075	5	0.025	0	1	0	0	5	0
12	S2	0	0	-10	0	0	0	1	0	-60	0	4520
0.09		S_3	0	-0.0325	5	-0.065	0	0	0	1	-0.45	0
					-0.12							11.4


0.2	X4	0	1.25	2.5	1.5	1	0	0	0	5	0	40
0.10	S5	0	-0.065	-0.11	-0.01	0	0	0	0	-0.5	1	6

The results above show that the results are feasible, marked with a positive Z value, all with just 1 iteration. allows for larger planting quantities and meets all constraints without violating them with the resulting yield: $Z = 23.688$; $X_1 = 0$; $X_2 = 0$; $X_3 = 0$; $X_4 = 40$, validation as follows:

$$\begin{aligned} \text{Max } Z &= 0.47486978X_1 + 0.469523646X_2 + 0.452139889X_3 + 0.592216575X_4 \\ &= 0.47486978(0) + 0.469523646(0) + 0.452139889(0) + 0.592216575(40) \\ &= 23.668 \end{aligned}$$

Simplex Calculations Using QM for Windows V5 Software

The following shows the linear programming menu of the QM for Windows V5 software, starting from the initial data input to obtaining optimal results.

Picture 1. Initial Data Input Display (source)

Optimasi Penanaman Solution											
Cj	Basic Variables	Quantity	4749000072	4695000052	4521000087	5921999812	0 slack 1	0 slack 2	0 slack 3	0 slack 4	0 slack 5
Iteration 1											
0	slack 1	500	0.03	0.07	0.07	0.03	1	0	0	0	0
0	slack 2	5,000	15	20	18	12	0	1	0	0	0
0	slack 3	15	0.08	0.1	0.07	0.09	0	0	1	0	0
0	slack 4	8	0.25	0.5	0.3	0.2	0	0	0	1	0
0	slack 5	1,000	0.06	0.14	0.14	0.1	0	0	0	0	1
	Z_j	0	0	0	0	0	0	0	0	0	0
	$C_j - Z_j$		0.4749	0.4695	0.4521	0.5922	0	0	0	0	0
Iteration 2											
0	slack 1	498.8	-0.0075	-0.005	0.025	0	1	0	0	-0.15	0
0	slack 2	4,520.0	0	-10.0	0	0	0	1	0	-60.0	0
0	slack 3	11.4	-0.0325	-0.125	-0.065	0	0	0	1	-0.45	0
59	X4	40.0	1.25	2.5	1.5	1	0	0	0	5.0	0
0	slack 5	996	-0.065	-0.11	-0.01	0	0	0	0	-0.5	1
	Z_j	23.688	.74	1.48	.89	.59	0	0	0	2.96	0
	$C_j - Z_j$		-0.2653	-1.011	-0.4362	0	0	0	0	-2.961	0

Picture 2. QM for Windows V5 iteration and optimal solution

(3). Transportation with the Stepping Stone Method

The distribution of 1,200 units of Adam Hawa plant seedlings per month using the simplex method requires an efficient delivery system to seven service areas. To support this activity, the Surabaya City

Environmental Agency (DLH) operates three distribution fleets, each with a capacity of 500 bags, 300 bags, and 400 bags. Each district has varying planting needs, ranging from 190 to 200 bags of shrubs. The Stepping Stone method is applied to determine the most efficient distribution route by calculating shipping costs from each fleet to each district.

(a). Organize the data into a transportation table

Table 12. Distribution Costs and Demand per Location

To/From	(P)	(T1)	(T2)	(S)	(U)	(B1)	(B1)	Capacity
A1	28			38	55			
	0	150	210	0	0	650	750	500
A2	23			33	52			
	0	120	170	0	0	620	680	300
A3	25			35	53			
	0	130	190	0	0	610	720	400
Demand	28			21	16			
	0	120	140	0	0	200	90	1,200

(b). The initial solution uses the Northwest Corner Method (NWC).

Table 13. Initial Loading

To/From	(P)	(T1)	(T2)	(S)	(U)	(B1)	(B1)	Capacity
A1	280	150	210	38	55	65	75	500
	280	120	100					
A2	23	12	170	330	540	62	68	300
		40	210	50				
A3	25	13	19	35	530	610	720	400
Demand	280	120	140	210	160	200	90	1,200

$$\begin{aligned}
 Z = & 280(280) + 120(150) + 100(210) + 40(170) + 210(330) + \\
 & 50(540) + 110(530) + 200(610) + 90(720) \\
 = & 465,600
 \end{aligned}$$

Next is a further evaluation using the Stepping Stone method which shows that there is no negative opportunity cost value in the empty cells, which indicates that the NWC solution is optimal.

Table 14. Initial Solution Results for Northwest Corner (NWC)

To/From	(P)	(T1)	(T2)	(S)	(U)	(B1)	(B1)	Capacity
A1	280	150	210	380	550	650	750	500
	280	120	100					
A2	230	120	170	330	540	620	680	300
		40	210	50				
A3	250	130	190	350	530	610	720	400
Demand	280	120	140	210	160	200	90	1,200

The following are non-basic variables that will determine the trajectory according to table

$$\begin{aligned}
 A1-S & : C14-C13+C23-C24 = 10 \\
 A1-U & : C15-C13+C23-C25 = -30 \\
 A1-B1 & : C16-C13+C23-C25+C35-C36 = 150 \\
 A1-B2 & : C17-C13+C23-C25+C35-C37 = -20 \\
 A2-P & : C21-C11+C13-C23 = -10 \\
 A2-T1 & : C22-C23+C13-C12 = 10
 \end{aligned}$$

A2-B1	: C26-C25+C35-C36	= 0
A2-B2	: C27-C25+C35-C37	= -50 (Biggest Negative)
A3-P	: C31-C11+C13-C23+C25-C35	= 20
A3-T1	: C32-C12+C13-C23+C25-C35	= 30
A3-T2	: C33-C23+C25-C35	= 30
A3-S	: C34-C24+C25-C35	= 30

Because the optimization test using the Stepping Stone method by determining the Stepping Stone path and cost changes for each non-basic variable still has negative values (the largest cost reduction), and the one with the largest negative value is selected, it is continued with the 2nd iteration.

Table 15. Iteration 2

To/From	(P)	(T1)	(T2)	(S)	(U)	(B1)	(B2)	Capacity
A1	280	150	210	380	550	650	750	500
	280	120	100					
A2	230	120	170	330	540	620	680	300
		40	210				50	
A3	250	130	190	350	530	610	720	400
			160	200		40		
Demand	280	120	140	210	160	200	90	1,200

The same as the previous step will be repeated by calculating the value of each empty cell.

A1-S	: C14-C13+C23-C24	= 10
A1-U	: C15-C13+C23-C27+C37-C35	= 20
A1-B1	: C16-C13+C23-C27+C37-C36	= 40
A1-B2	: C17-C13+C23-C27	= 30
A2-P	: C21-C11+C13-C23	= -10
A2-T1	: C22-C12+C13-C22	= 10
A2-B1	: C26-C27+C37-C36	= 50
A2-U	: C25-C35+C37-C27	= 50
A3-P	: C31-C11+C13-C23+C27-C37	= -30 (Biggest Negative)
A3-T1	: C32-C12+C13-C23+C27-C37	= -20
A3-T2	: C33-C23+C27-C37	= -20
A3-S	: C34-C24+C27-C37	= -20

Table 16. Iteration 3

To/From	(P)	(T1)	(T2)	(S)	(U)	(B1)	(B2)	Capacity
A1	280	150	210	380	550	650	750	500
	240	120	140					
A2	230	120	170	330	540	620	680	300
			210				90	
A3	250	130	190	350	530	610	720	400
	40			160	200			
Demand	280	120	140	210	160	200	90	1,200

A1-S	: C14	= 380
A1-U	: C15-C35+C31-C11	= -10 (Biggest Negative)
A1-B1	: C16-C11+C31-C36	= 10
A1-B2	: C17	= 750
A2-P	: C21	= 230
A2-T1	: C22	= 120
A2-T2	: C23	= 170
A2-U	: C25	= 540
A2-B1	: C26	= 620
A3-T1	: C32-C31+C11-C12	= 10

$$\begin{aligned} A3-T2 &: C33-C31+C11-C13 = 10 \\ A3-S &: C37 = 720 \end{aligned}$$

Table 17. Iteration 4

To/From	(P)	(T1)	(T2)	(S)	(U)	(B1)	(B2)	Capacity
A1	280	150	210	380	550	650	750	500
	200	120	140		40			
A2	230	120	170	330	540	620	680	300
				210			90	
A3	250	130	190	350	530	610	720	400
	80				120	200		
Demand	280	120	140	210	160	200	90	1,200

Next calculate the value of empty cells:

$$\begin{aligned} A1-S &: C14 = 380 \\ A1-B1 &: C16-C15+C35-C36 = 20 \\ A1-B2 &: C17 = 750 \\ A2-P &: C21 = 230 \\ A2-T1 &: C22 = 120 \\ A2-T2 &: C23 = 170 \\ A2-U &: C25-C15+C11-C31+C35 = 550 \\ A2-B1 &: C26 = 620 \\ A3-T1 &: C32-C31+C11-C12 = 10 \\ A3-T2 &: C33-C31+C11-C13 = 10 \\ A3-S &: C34 = 350 \\ A3-B2 &: C37 = 720 \end{aligned}$$

The optimization test on the fourth iteration using the Stepping Stone method by determining the Stepping Stone path and cost changes for each non-basic variable turns out to have no negative values (the largest cost reduction), so the solution on the fourth iteration solution is optimal with distribution costs. $Z = 200(280) + 120(150) + 140(210) + 40(550) + 210(330) + 90(680) + 80(250) + 120(530) + 200(610) = 461,500$

Evaluation and optimization were conducted using the Stepping Stone method. Through four iterations, empty cells in the distribution table were tested to determine whether there was a stepping stone path that could reduce total distribution costs. After these iterations, a more efficient allocation combination was identified, reducing total distribution costs to Rp 461,500.-

(4) Comparison with Previous Studies

Previous studies on urban greening and nursery optimization generally focus on a single aspect of decision-making. Multi-criteria decision-making methods such as TOPSIS have been widely used to rank alternatives based on ecological or technical criteria [5], [11], [18]. Separately, linear programming techniques such as the Simplex method have been applied to optimize resource allocation under multiple constraints [12], [20]. Likewise, transportation optimization using the Stepping Stone method has been implemented to reduce distribution costs in logistics systems [6], [22], [23]. However, these approaches are typically applied independently.

This study differs from previous research by integrating TOPSIS, Simplex, and Stepping Stone methods into a single, sequential decision-support model. The TOPSIS results directly inform the objective function of the Simplex model, ensuring that resource allocation aligns with plant priority rankings. Furthermore, the optimized planting plan becomes the input for transportation optimization using the Stepping Stone method. To the authors' knowledge, such an end-to-end integrated model for nursery management and urban planting optimization has not been comprehensively addressed in prior studies. This integration provides a more realistic and implementable solution for urban green infrastructure planning.

4. Conclusion

This study demonstrates that the integration of TOPSIS, Simplex, and Stepping Stone methods provides a coherent and practical decision-support model for nursery management and urban planting optimization. Rather than treating plant selection, resource allocation, and distribution as separate problems, the proposed framework ensures consistency between strategic priorities and operational feasibility.

The integrated model developed in this study can be extended to other municipal nurseries or adapted for broader urban forestry planning contexts, where decision-makers face similar challenges related to multi-criteria evaluation, limited resources, and complex distribution networks. Future research may expand the model by incorporating dynamic demand, uncertainty analysis, or environmental impact indicators to further enhance its applicability.

Reference

- [1] A. S. Dollah, Nirwana, M. Mustafa, and A. M. Januarti Putri, "The social performance of the Green Open Space (GOS) in Karebosi Field Complex," *Soc. Sci. Humanit. Open*, vol. 8, no. 1, p. 100540, 2023, doi: 10.1016/j.ssaho.2023.100540.
- [2] R. Home and L. Vieli, "Psychosocial outcomes as motivations for urban gardening: A cross-cultural comparison of Swiss and Chilean gardeners," *Urban For. Urban Green.*, vol. 52, no. May, p. 126703, 2020, doi: 10.1016/j.ufug.2020.126703.
- [3] S. Soeraningsih and L. Lukmandono, "Penentuan Rute Distribusi melalui Integrasi metode Saving Matrix dan Nearest Insert pada Distribusi Alokasi di Kabupaten Gresik," *Pros. SENIATI*, vol. 6, no. 4, pp. 766–773, 2022, doi: 10.36040/seniati.v6i4.5121.
- [4] A. V Fatnita and Lukmandono, "Optimasi Rute Distribusi Tabung LPG 3 Kg Dengan Menggunakan Alogaritma Genetika Pada Penyelesaian Capacitated Vehicle Routing Problem (CVRP) (Studi kasus pada PT. Jana Pusaka Migas)," *Pros. Semin. Nas. Sains dan Teknol. Terap.*, vol. 1, no. 1, pp. 39–46, 2020, [Online]. Available: <https://ejournal.itats.ac.id/sntekpan/article/view/1213>
- [5] E. Rafiei-Sardooi, A. Azareh, B. Choubin, A. H. Mosavi, and J. J. Clague, "Evaluating urban flood risk using hybrid method of TOPSIS and machine learning," *Int. J. Disaster Risk Reduct.*, vol. 66, no. September, p. 102614, 2021, doi: 10.1016/j.ijdrr.2021.102614.
- [6] I. N. Biomej, Y. W. Biomej, and T. P. S. Biomej, "Shipping Cost Optimization Using Least Cost and Stepping Stone Method at The Xender Brand Sandal Factory," *Biomej*, vol. 3, no. 1, pp. 36–42, 2023, doi: 10.33005/biomej.v3i1.74.
- [7] Y. Chen *et al.*, "Preparation and performance of the ultra-high performance mortar based on simplex-centroid design method," *J. Mater. Res. Technol.*, vol. 15, pp. 3060–3077, 2021, doi: 10.1016/j.jmrt.2021.09.107.
- [8] B. Wu, M. Lu, W. Huang, Y. Lan, Y. Wu, and Z. Huang, "A Case Study on the Construction Optimization Decision Scheme of Urban Subway Tunnel Based on the TOPSIS Method," *KSCE J. Civ. Eng.*, vol. 24, no. 11, pp. 3488–3500, 2020, doi: 10.1007/s12205-020-1290-9.
- [9] N. Lifshitz, "On set systems without a simplex-cluster and the junta method," *J. Comb. Theory. Ser. A*, vol. 170, p. 105139, 2020, doi: 10.1016/j.jcta.2019.105139.
- [10] T. Dhiwangkara and Lukmandono, "Penerapan Lean Manufacturing Dengan Pendekatan Metode Value Stream Mapping Dan Failure Mode And Effect Analysis Untuk Mengurangi Pemborosan Produksi (Study Kasus pada PT.XYZ)," *Inst. Teknol. Adhi Tama Surabaya*, vol. 9, no. 1, pp. 62–70, 2021.
- [11] D. A. Agar, P. Hansen, M. Rudolfsson, and B. Blagojević, "Combining behavioural TOPSIS and six multi-criteria weighting methods to rank biomass fuel pellets for energy use in Sweden," *Energy Reports*, vol. 10, pp. 706–718, 2023, doi: 10.1016/j.egyr.2023.07.007.
- [12] J. C. Lozano Medina, V. Henríquez Concepción, C. A. Mendieta Pino, and F. León Zerpa, "Proposal of an optimization tool for demand response in island electricity systems (IES) using the Simplex method and Generalized reduced gradient (GRG)," *J. King Saud Univ. - Sci.*, vol. 36, no. 9, 2024, doi: 10.1016/j.jksus.2024.103345.

- [13] D. Anisa Permatasari and L. Lukmandono, "Implementasi Metode Saving Matrix Dan Nearest Neighbor Untuk Meningkatkan Efektivitas Dan Efisiensi Rute," *Ind. Inov. J. Tek. Ind.*, vol. 14, no. 1, pp. 101–106, 2024, doi: 10.36040/industri.v14i1.6990.
- [14] H. W. Wu, P. Kumar, and S. J. Cao, "The role of roadside green infrastructure in improving air quality in and around elderly care centres in Nanjing, China," *Atmos. Environ.*, vol. 332, no. March, p. 120607, 2024, doi: 10.1016/j.atmosenv.2024.120607.
- [15] Z. Ring, D. Damyanovic, and F. Reinwald, "Green and open space factor Vienna: A steering and evaluation tool for urban green infrastructure," *Urban For. Urban Green.*, vol. 62, p. 127131, 2021, doi: 10.1016/j.ufug.2021.127131.
- [16] J. Macháč, J. Brabec, and A. Arnberger, "Exploring public preferences and preference heterogeneity for green and blue infrastructure in urban green spaces," *Urban For. Urban Green.*, vol. 75, 2022, doi: 10.1016/j.ufug.2022.127695.
- [17] U. Afzal *et al.*, "Intelligent faculty evaluation and ranking system based on N-framed plithogenic fuzzy hypersoft set and extended NR-TOPSIS," *Alexandria Eng. J.*, vol. 109, no. April, pp. 18–28, 2024, doi: 10.1016/j.aej.2024.08.071.
- [18] U. Tanveer, M. D. Kremantzin, N. Roussinos, S. Ishaq, L. S. Kyrgiakos, and G. Vlontzos, "A fuzzy TOPSIS model for selecting digital technologies in circular supply chains," *Supply Chain Anal.*, vol. 4, no. September, p. 100038, 2023, doi: 10.1016/j.sca.2023.100038.
- [19] J. Liu, W. Long, Y. Wu, J. Xu, J. Sang, and X. Lei, "TLE orbit determination using simplex method," *Geod. Geodyn.*, vol. 14, no. 5, pp. 438–455, 2023, doi: 10.1016/j.geog.2023.03.004.
- [20] R. F. Da Silva *et al.*, "Tariff Optimization under Incentive Regulation of Public Services Using Simplex method," *Procedia Comput. Sci.*, vol. 214, no. C, pp. 1325–1333, 2022, doi: 10.1016/j.procs.2022.11.312.
- [21] O. Solution, O. F. Symmetric, T. Fuzzy, T. Problem, and S. S. Method, "OPTIMAL SOLUTION OF SYMMETRIC TRIANGULAR FUZZY TRANSPORTATION PROBLEM USING," vol. 01, no. 07, pp. 497–499, 2020.
- [22] D. C. S. Bisht and Pankaj Kumar Srivastava, "Minimum demand supply based stepping stone approach to solve a special trapezoidal fuzzy transportation problem," *Int. J. Model. Simul.*, vol. Volume 44, no. Issue 2, pp. 106–114, 2024, [Online]. Available: <https://www.tandfonline.com/doi/abs/10.1080/02286203.2022.2161351>
- [23] Annisa and Mardiningsih, "Analysis of Transportation Method in Optimization of Distribution Cost Using Stepping Stone Method and Modified Distribution," *J. Math. Technol. Educ.*, vol. 1, no. 1, pp. 103–112, 2021, doi: 10.32734/jomte.v1i1.7561.

How to cite this article:

Hartono R, Lukmandono. Application Of Stepping Stone And Simplex Methods For Planting Optimization With Topsis As A Determining Criteria. *Jurnal Teknologi dan Manajemen*. 2026 January; 7(1): 60-73. DOI: 10.31284/j.jtm.2026.v7i1.8266