

Jurnal Sumberdaya Bumi Berkelanjutan https://ejurnal.itats.ac.id/semitan

Penilaian Risiko Operasional Proses Pembangunan Kapal Wisata Trimaran *Bottom Glass* Menggunakan Metode *Fault Tree Analysis* Dan Matrik Risiko Pada PT.ABC

Fahmi Idris Almaeda¹⁾, Minto Basuki ¹⁾

¹⁾Jurusan Teknik Perkapalan, Institut Teknologi Adhi Tama Surabaya

Jl. Arief Rachman Hakim, No. 100 Surabaya

¹⁾email: idrisfahmi1717@gmail.com

Info Artikel

Diserahkan:
20 Juni 2022
Direvisi:
27 Juli 2022
Diterima:
2 Agustus 2022
Diterbitkan:
6 Agustus 2022

Abstrak

Indonesia sebagai negara maritim tidak lepas dari transportasi laut untuk perdagangan maupun pariwisata, Untuk sektor pariwisata pemerintah telah mempersiapkan kapal trimaran bottom glass yang akan beroperasi pada wilayah Likupang Provinsi Sulawesi Utara dan Labuan Bajo Provinsi Nusa Tenggara Timur. Sebuah proyek pembangunan pasti memiliki kendala tersendiri dalam menyelesaikannya, keterlambatan proyek pembangunan. Penyebab keterlambatan proyek biasanya karena keterbatasan peralatan, tenaga kerja yang minim, dan kurangnya koordinasi. Tujuan penelitian ini mencari penyebab keterlambatan pembangunan kapal trimaran bottom glass, analisa keterlambatan proyek akan menggunakan metode Fault Tree Analysis (FTA). Metode Fault Tree Analysis (FTA) menganalisa kejadian utama top event yang dikembangkan untuk mencari penyebab dasar atau basic event. Pengumpulan data diperoleh dari hasil wawancara dan laporan pembangunan, terdapat 3 jenis pekerjaan yaitu engineering, pengadaan material, dan produksi. Masing-masing pekerjaan dianalisa faktor penyebab keterlambatan dengan menggunakan metode Fault Tree Analysis (FTA) dan didapatkan 4 intermediate event . Dari 4 intermediate event dikembangkan lagi untuk memperoleh basic event, dan diperoleh 16 kejadian dasar atau basic event yang menjadi penyebab keterlambatan proyek pembangunan kapal trimaran bottom glass.

Kata Kunci: *Bottom Glass*, *Fault Tree Analysis*, Pembangunan kapal, Keterlambatan pembanguan, Risiko operasional

Abstract

Indonesia as a maritime country cannot be separated from sea transportation for trade and tourism. For the tourism sector, the government has prepared a trimaran bottom glass ship that will operate in the Likupang area of North Sulawesi Province and Labuan Bajo, East Nusa Tenggara Province. A development project must have its own obstacles in completing it, such as delays in development projects. The causes of project delays are usually due to limited equipment, minimal manpower, and lack of coordination. The purpose of this study is to find the cause of the delay in the construction of the trimaran bottom glass ship, the analysis of project delays will use the Fault Tree Analysis (FTA) method. The Fault Tree Analysis (FTA) method analyzes the main events of the top event which was developed to find the basic cause or basic

Jurnal Sumberdaya Bumi Berkelanjutan https://ejurnal.itats.ac.id/semitan

event. Data collection is obtained from interviews and development reports, there are 3 types of work, namely engineering, material procurement, and production. Each job is analyzed for the factors causing delays using the Fault Tree Analysis (FTA) method and obtained 4 intermediate events. Of the 4 intermediate events, it was further developed to obtain basic events, and 16 basic events were obtained which caused delays in the trimaran bottom glass ship construction project.

Kata Kunci: Bottom Glass, Fault Tree Analysis, Shipbuilding, Development delays, Operational risk

Pendahuluan

Sebagai negara maritim Indonesia tidak lepas dari transportasi laut yaitu kapal, untuk perdagangan maupun pariwisata.. Keberadaan galangan kapal ini menjadi suatu peluang lapangan pekerjaan. Menurut Widodo (1987), Secara umum galangan kapal bergerak pada bidang pembangunan kapal baru dan perawatan kapal. Untuk sektor pariwisata pemerintah sudah menyiapkan kapal wisata *bottom glass*. Kapal *bottom glass* ini memiliki kaca pada bagian bawah kapal agar wisatawan dapat menikmati pemandangan dibawah air. Kapal ini akan beroperasi di wilayah Likupang Provinsi Sulawesi Utara dan Labuan Bajo Provinsi Nusa Tenggara Timur.

Menurut Nurhayati (2010), sebuah proyek pembangunan adalah aktivitas yang diorganisasikan untuk mencapai tujuan yang penting menggunakan anggaran dan sumber daya yang tersedia dengan jangka waktu tertentu. Menurut Regatama (2019) penyebab keterlambatan proyek yaitu keterbatasan peralatan yang digunakan, peralatan yang jarang dirawat, dan jumlah tenaga kerja yang minim. Ketepatan waktu penyelesaian proyek sesuai target harus diwujudkan. Keterlambatan proyek akan menambah biaya, karena harus membayar sanksi kepada pemilik proyek sesuai kesepakatan. Agar penyelesaian proyek tepat waktu maka dilakukan analisa terhadap faktor-faktor yang mempengaruhi keterlambatan penyelesaian proyek Bonardo (2021).

Basuki dan Imawan (2015), melakukan analisis risiko operasional tentang kegiatan proses produksi dibagi menjadi 3 yaitu proses desain, proses pengadaan material, dan proses produksi. Menentukan peringkat risiko ditinjau dari probabilitas yang terjadi pada kegagalan dan dampak kegagalan yang ada pada matrik risiko. Yang menjadi kategori tinggi dalam proyek pembangunan kapal adalah hull outfitting, construction outfitting, dan machinery outfitting. Ketiga proses produksi tersebut berkaitan satu sama lain dan tidak dapat dipisahkan, ketiganya harus berjalan dengan baik karena masing-masing memiliki risiko yang berbeda. Mengelola risiko bisa dimulai dari mengidentifikasi risiko, kemudian menilai tingkat keparahan risiko tersebut sehingga bisa diprioritaskan pengelolaannya. Serta menentukan mitigasi risiko agar dapat menurunkan tingkat risiko (Kristanto dkk, 2018). Analisis risiko pada pekerjaan bangunan dilakukan menggunakan data-data yang direkam pada proses bangunan baru kapal tanker ukuran 3.500 DWT, 6.500 DWT dan 17.500 DWT yang dikerjakan oleh perusahan galangan kapal nasional. Pada analisis tersebut digunakan matrik risiko, pekerjaan hull outfitting, hull construction dan machinery outfitting masuk kategori risiko tinggi (Basuki dan Putra, 2015). Analisa risiko pada bangunan baru menggunakan matrik risiko dan didapatkan 8 faktor risiko dan perlu penanganan sebaik mungkin sehingga tidak terjadi keterlambatan proyek bangunan baru (Sulistyana dkk, 2017).

Basuki et al. (2014), Asdi dan Basuki (2021) melakukan penilaian risiko pada bangunan baru dibagian desain, material dan produksi dengan menggunakan metode Bayesian dan telah menghasilkan model risiko telah dilakukan dengan survey pada galangan kapal di Indonesia. Untuk mengembangan industri galangan pada proses pembangunan kapal baru untuk mengurangi waktu pembangunan kapal dengan pendekatan risiko pada galangan kapal dilakukaan Basuki dan Wijaya (2008), Basuki et al. (2012), Basuki dan Choirunisa (2012). Basuki dan Hildawan (2021) melakukan penilaian risiko pada proses

pembangunan kapal tug boat dengan pendekatan kombinasi *House of Risk* (HOR) dan *Critical Chain Project Management* pada material impor yang dilakukan galangan kapal. Pada kasus proyek pembangunan baru kapal perintis 2000 GT dengan metode *Pimavera Risk Analyst* didapatkan keterlambatan 92 hari dari target awal 727 hari. Terdapat 16 risiko yang berpengaruh pada proyek, yaitu 4 risiko kategori sangat tinggi, 9 risiko kategori tinggi, 3 risiko kategoi sedang (Alvian dkk, 2018).

Analysa dkk (2019), melakukan analisi pada pembangun proyek banyak mengalami keterlambatan karena beberapa faktor, seperti faktor owner, kontraktor, pekerja yang terlibat dll. Sehingga perlu adanya evaluasi untuk mengetahui pekerjaan apa yang mengalami keterlambatan dan apa penyebab keterlambatan tersebut. Banyak metode analisa risiko, salah satunya dengan metode *Fault Tree Analysis (FTA)*. Hasil dari analisa data pada salah satu proyek pembangunan Gedung di Mojokerto didapatkan adanya keterlambatan pada pekerjaan kelistrikan disebabkan oleh tidak berjalannya fungsi pengawasan oleh pihak konsultan. Hasil analisa risiko pada pembangunan proyek Gedung perpustakaan UINSA terjadi keterlambatan 49 hari, yang seharusnya selesai dibangun dalam 154 hari menjadi 203 hari. Dari hasil analisa risiko dengan metode FTA didapatkan keterlambatan dipengaruhi dengan persiapan pekerjaan, penggunaan sistem kerja tiga shift dengan tenaga kerja yang sama, pihak owner, kontraktor, dan juga cuaca (Yudhagama dkk, 2020). Metode FTA merupakan suatu metode yang digunakan untuk mengidentifikasi risiko yang berdampak pada terjadinya kegagalan. Metode ini diawali dengan asumsi kegagalan atau kerugian dari kejadian puncak (*Top Event*) kemudian merinci sebab – sebab sampai pada suatu kegagalan dasar (*Root Cause*) (Febby,2014).

Metodologi

1. Tahap Persiapan

Pada tahap ini dimulai dari studi literatur tentang pembangunan kapal dan analisa risiko menggunakan metode FTA dan Matrik Risiko dengan cara melihat jurnal dari penelitian yang sudah dilakukan. Kemudian pengumpulan data yang diperlukan melalui wawancara dengan pihak yang bersangkutan dengan proses pembangunan kapal.

2. Tahap Analisa Data

Pada tahap ini akan menganilasa dayta yang diperoleh dari perusahaan menggunakan metode *fault tree analysis* agar mengetahui penyebab risiko keterlambatan pembangunan kapal, dan untuk penilaian risiko menggunakan matrik risiko.

3. Tahap Kesimpulan dan Saran

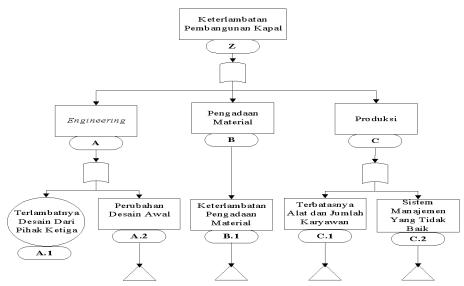
Pada tahap ini data yang sudah diolah menggunakan metode FTA dan matrik risiko akan disimpulkan penyebab risiko yang terjadi pada pembangunan kapal trimaran *bottom glass* dan kesimpulan dari cara mengurangi resiko keterlambatan pembangunan proyek agar risiko dapat ditekan seminimal mungkin. Setelah semua itu didapatkan dapat dilakukannya pembuatan laporan untuk hasil dari penelitian dan juga sebagai bukti fisik bahwa penelitian ini telah dilakukan.

Hasil dan pembahasan

Pada penelitian ini menganalisa operasional proyek pembangunan kapal trimaran *bottom glass* yang dikerjakan pada PT.ABC. pada proyek ini akan dianalisa penyebab terjadinya keterlambatan pengerjaan dengan metode *Fault Tree Analysis* (FTA).

Tabel 1. Standard bobot pengerjaan kapal

No	Jenis Pekerjaan	Standard (%)
	Engineering	
1	Gambar Kerja & Gambar Final	1,257
	Pengadaan Material	
1	Material Lambung & Bangunan Atas	6,0610
2	Perlengkapan Lambung	2,4390
3	Akomodasi	9,4360



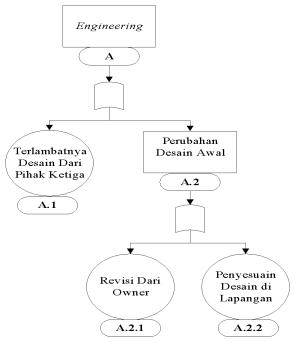
Jurnal Sumberdaya Bumi Berkelanjutan https://ejurnal.itats.ac.id/semitan

4	Perlengkapan Komunikasi & Navigasi 4,0300		
5	Permesinan 28,9310		
6	Motor Bantu & Pompa-Pompa 11,6530		
7	Tangki-Tangki 0,8170		
8	Sistem Perpipaan 3,1430		
9	Alat Tambat & Labuh 1,9880		
10	Perlengkapan Keselamatan & Pemadam Kebakaran	1,6570	
11	Kelistrikan 6,1890		
12	Mesin-Mesin Geladak 4,4240		
	Produksi		
1	Konstruksi Lambung	8,970	
2	Permesinan & Perlengkapan	4,158	
3	Interior & Perlengkapan	1,082	
4	Listrik & Perlengkapan	2,502	
5	Geladak & Perlengkapan	1,191	
	TOTAL	100	

Pada tabel 1, diperlihatkan bobot dari masing-masing pekerjaan pada pembangunan kapal trimaran *bottom glass*. Terlihat bobot paling tinggi pada proses pengadaan material, karena ketersediaannya material berpengaruh besar pada proses produksi.

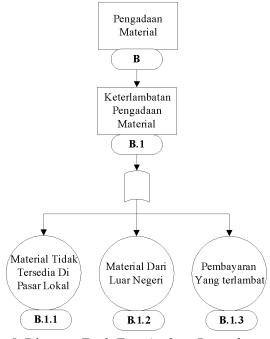
1. Keterlambatan Pembangunan

Gambar 3. Diagram Fault Tree Analysis Keterlambatan Pembangunan Kapal


Dari data diagaram *fault tree analysis* keterlambatan pembangunan kapal terdapat 4 *intermediate event*, masing-masing *intermediate event* akan dikembangkan lagi untuk mengetahui kejadian dasar atau *basic event*.

2. Engineering

Jurnal Sumberdaya Bumi Berkelanjutan https://ejurnal.itats.ac.id/semitan



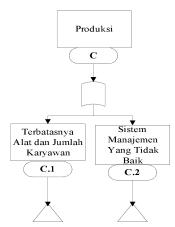
Gambar 4. Diagram Fault Tree Analysis Engineering

Penyebab keterlambatan pada desain dan penyebab keterlambatan karena adanya desain yang direvisi dari pihak owner maupun pihak ketiga, penyesuaian pada proses pengerjaan di lapangan juga akan menimbulkan modifikasi pada desain awal.

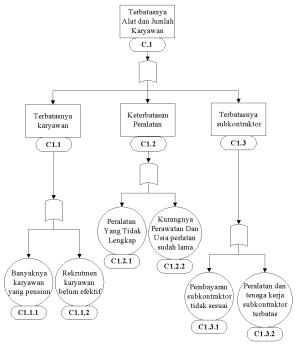
3. Pengadaan Material

Gambar 5. Diagram Fault Tree Analysis Pengadaan material

Penyebabnya keterlambatan bisa jadi material tidak tersedia di pasar lokal maupun yang mengakibatkan harus impor dari luar negeri yang kedatangannya cukup lama, juga permasalahan Jurnal Sumberdaya Bumi Berkelanjutan (SEMITAN) / ISSN 2962-682X 131



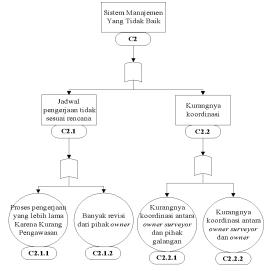
Jurnal Sumberdaya Bumi Berkelanjutan https://ejurnal.itats.ac.id/semitan


pembayaran oleh pihak galangan yang tidak sesuai kesepakatan yang mengakibatkan tidak dikirimnya material. Hal ini akan berdampak pada proses produksi yang tidak dapat berjalan sesuai jadwal.

4. Produksi

Gambar 6. Diagram Fault Tree Analysis Produksi

Proses produksi yang memiliki 2 *intermediate event* yaitu terbatasnya alat dan jumlah karyawan dan sistem manajemen yang tidak baik. Dari 2 *intermediate event* akan dikembangkan untuk memperoleh *basic event*.


Gambar 7. Diagram Fault Tree Analysis Terbatasnya Alat Dan Jumlah Karyawan

Penyebab kurangnya karyawan pada galangan karena banyak karyawan yang pensiun dan rekrutmen karyawan baru kurang untuk menempati posisi karyawan yang sudah pensiun. Pada pihak subkontraktor juga memiliki jumlah tenaga kerja yang kurang dan peralatan yang kurang memadai akan perdampak pada pekerjaan di galangan.

Gambar 8. Diagram Fault Tree Analysis Sistem Manajemen Yang Tidak Baik

Penyebab dari sistem manajemen yang tidak baik karena jadwal pengerjaan yang tidak sesuai dengan rencana awal, yaitu karena beberapa proses produksi yang pengerjaan lebih lama dari target dan adanya beberapa revisi oleh pihak owner. Hal ini mengakibatkan pengerjaan lebih lama dari jadwal yang sudah ditentukan. Juga permasalahan komunikasi antara *owner surveyor* dan pihak galangan atau *owner surveyor* dengan *owner*, jika masalah komunikasi anatar ketiganya tidak lancar maka akan memakan waktu lama untuk proses produksi.

5. Basic Event Keterlambatan Pembangunan

Dari analisa keterlambatan proses produksi diatas menggunakan *fault tree analysis* (FTA) diperoleh 16 *basic event* sebagai berikut :

Tabel 2. Basic Event Dari Fault Tree Analysis (FTA)

No	Kode Kejadian	Nama Kejadian
1	A.1	Terlambatnya desain dari pihak ketiga
2	A2.1	Revisi desain dari owner
3	A2.2	Penyesuaian desain di lapangan
4	B.1.1	Material tidak tersedia di pasar lokal
5	B.1.2	Material dari luar negeri
6	B.1.3	Pembayaran yang terlambat
7	C.1.1.1	Banyaknya karyawan yang pensiun
8	C.1.1.2	Rekrutmen karyawan belum efektif
9	C.1.2.1	Peralatan yang tidak lengkap
10	C.1.2.2	Kurangnya perawatan dan usia peralatan yang sudah lama

Jurnal Sumberdaya Bumi Berkelanjutan https://ejurnal.itats.ac.id/semitan

11	C.1.3.1	Pembayaran subkontraktor yang tidak sesuai
12	C.1.3.2	Peralatan dan tenaga kerja subkontraktor terbatas
13	C.2.1.1	Proses pengerjaan yang lebih lama karena kurang pengawasan
14	C.2.1.2	Banyak revisi dari pihak owner
15	C.2.2.1	Kurangnya koordinasi antara owner surveyor dan pihak galangan
16	C.2.2.2	Kurangnya koordinasi antara owner surveyor dan owner

Kesimpulan

Dari analisa menggunakan *Fault Tree Analysis* (FTA) diketahui kejadian utama atau *top event* yaitu keterlambatan pengerjaan proyek yang dipecah lagi menjadi 3 *intermediate event*. Pada 3 *intermediate event* dikembangkan lagi menjadi 4 *intermediate event*. Ke 4 *intermediate event* dikembangkan lagi untuk mengatahui kejadian dasar atau *basic event*, dan didapatkan 16 kejadian dasar atau *basic event* yang menjadi penyebab keterlambatan proyek pembangunan kapal *Trimaran Bottom Glass*.

Referensi:

- [1] Alvian, R., Pujo, I., dan Amirrudin, W., (2018), Evaluasi Penyebab Keterlambatan Pada Proyek Pembanguanan Kapal Baru Berdasarkan Manajemen Risiko Studi Kasus Kapal Perintis 2000 GT, Jurnal Universitas Diponegoro.
- [2] Analysa, D., Suhudi., dan Dinar, P., (2015). Evaluasi Keterlambatan Proyek Pembangunan Graha Mojokerto Service City (GMSC) Dengan Metode FTA (*Fault Tree Analysis*). Jurnal. Universitas Tribhuwana Tunggadewi Malang.
- [3] Australia and Standards New Zealand Standards 4360, (2004), Risk Management Guidelines. Sydney.
- [4] Asdi, R., And Basuki, M., (2021), Risk Management In Shipbuilding Using Bayesian Network With Noisy-Or, Proceeding IOP Conference Series: Materials Science And Engineering, ITATS 2021
- [5] Basuki, M., dan Widjaja, S., (2008), Studi Pengembangan Model Manajemen Risiko USAha Bangunan Baru Pada Industri Galangan Kapal, Prosiding Seminar Nasional Teknoin, UII Yogyakarta.
- [6] Basuki, M., dan Setyoko, T., (2009), Risiko Operasional Pada Proses Pembangunan Kapal FPB 38 Dengan Material Alumunium Di PT.PAL INDONESIA, Prosiding Seminar Nasional Teori dan Aplikasi Teknologi Kelautan (SENTA) 2009.
- [7] Basuki, M dan Choirunisa, B. (2012), Analisa Risiko Proses Pembangunan Kapal Baru 3.500 LTDW White Product Oil Tanker Pertamina di PT. Dumas Tanjung Perak Surabaya, Jurnal Neptunus, Volume 18, Nomor 2, pp. 97-109, Edisi Juli 2012, Fakultas Teknik UHT
- [8] Basuki, M., Manfaat, D., Setiyo, N., and Dinariyana, A.A.B., (2012), *Improvement Of The Process Of New Business Of Ship Building Industry, Journal of Economics, Business, & Accountancy Ventura, Vol. 15, Issue 2, pp 187-204.*
- [9] Basuki, M., Manfaat, D., Setiyo, N., and Dinariyana, A.A.B., (2014), *Probabilistic Risk Assessment Of The Shipyard Industry Using The Bayesian Method, International Journal of Technology, Vol. 5, Issue 1, pp 88-97.*
- [10] Basuki, M., dan Putra, A.A.W., (2015), Penilaian Risiko Pekerjaan Bangunan Baru pada Galangan Kapal Klaster Jawa Menggunakan Matrik Risiko, Prosiding Seminakel X UHT Surabaya

Jurnal Sumberdaya Bumi Berkelanjutan https://ejurnal.itats.ac.id/semitan

- [11] Basuki, M., dan Imawan, P. S., (2015), Penilaian Risiko Pekerjaan Bangunan Baru Pada Galangan Kapal Klaster Sumatera, Batam Dan Karimun Menggunakan Produksi Berbasis Risiko (Risk-Based Production). Jurnal. Institut Teknologi Adhi Tama Surabaya
- [12] Basuki, M., and Hildawan, O. M., (2021), Operational Risk Assessment Ship Construction Causes Material Import Using House Of Risk (HOR) and Critical Chain Project Management: Case Study In Gresik Shipyard Industry, Journal of Marine-Earth Science and Technology, Vol. 2, Issue 1, pp 24-28.
- [13] Bonardo, K., S., (2021), Analisis Keterlambatan Proyek Menggunakan Metode FMEA (*Failure Mode And Effect Analysis*) Dan FTA (*Fault Tree Analysis*), Skripsi, Universitas Sumatera Utara.
- [14] Ericson, C., (1999), Fault Tree Analysis—A History. Proceedings, The Boing Company, Washington.
- [15] Febby, A., M., (2014), Analisa Keterlambatan Proyek Menggunakan FTA (*Fault Tree Analysis*), Jurnal. Universtas Brawijaya.
- [16] Foster, S., T., (2004), *Managing Quality : An Intergrative Approach*. Pearson Prentice Hall, England.
- [17] Haris, M., (2016), Kajian Manajemen *Fault Tree Analysis*, Dikutip dari Web Site: https:muh-haris.blogspot.co.id/2015/10/kajian-manajemen-fault-tree-analysis-fta.html (17 Februari 2022).
- [18] Kristianto, A., Basuki, M., dan Imawan, P., S., (2018), Penilaian Risiko Bongkar Muat Kapal Cargo PT.MULTIGUNA SHIPPING LINES Di Pelabuhan Umum Gresik, Prosiding SENIATI, ITN Malang.
- [19] Nurhayati., (2010), Manajemen Proyek, Jogjakarta: Graha Ilmu.
- [20] Regatama, G., Amirrudin, W., dan Pujo, I., (2019). Analisa *Network Planning* Reparasi Kapal SPB TITAN 70 Dengan Metode *Critical Path Method*. Jurnal. Universtas Diponegoro.
- [21] Widodo, G., (1987), Mengatasi Keterlambatan Pada Penyelesaian Proyek Pembuatan Bangunan Kapal Di PT.DOK Dan PERKAPALAN SURABAYA, Skripsi, Universtas Airlangga.