Karbon Dots sebagai Sistem Penghantaran Obat Cerdas Berbasis Nanoteknologi

Adi Permadi

Abstract

Carbon dots (CDs) are carbon-based nanomaterials smaller than 10 nm that exhibit strong fluorescence, excellent chemical stability, and environmental friendliness, making them promising candidates for diverse applications. This paper discusses the synthesis methods of carbon dots, particularly bottom-up techniques such as pyrolysis and hydrothermal synthesis, using eco-friendly precursors like agricultural and food waste. CDs are characterized by techniques including FTIR, UV-Vis, and TEM to reveal their structural and optical properties. CDs have various applications, including heavy metal sensing, bioimaging, and antimicrobial agents. The key advantages of CDs include low production costs, abundant raw materials, and high biocompatibility. This study highlights the great potential of CDs in supporting environmentally friendly technologies and encourages further research on their functionalization and future applications.

Full Text:

PDF

References

W. Chen, G. Lv, W. Hu, D. Li, S. Chen, and Z. Dai, “Synthesis and applications of graphene quantum dots: A review,” Apr. 25, 2018, Walter de Gruyter GmbH. doi: 10.1515/ntrev-2017-0199.

H. F. Etefa, A. A. Tessema, and F. B. Dejene, “Carbon Dots for Future Prospects: Synthesis, Characterizations and Recent Applications: A Review (2019–2023),” C (Basel), vol. 10, no. 3, p. 60, Jul. 2024, doi: 10.3390/c10030060.

S. A. Lestari, Y. A. Nihan, W. Windari, and I. Salsabila, “Review Article: Karakteristik Terbaik Nanopartikel Emas Hasil Green Synthesis Menggunakan Ekstrak Tumbuhan sebagai Bioreduktor,” Jurnal Integrasi Kesehatan & Sains, vol. 6, no. 2, pp. 144–149, Jul. 2024, doi: 10.29313/jiks.v6i2.13727.

I. Retnosari, I. N. Hayati, A. Amalia, S. Hastuti, and T. E. Saraswati, “The Chemical Characteristics of Iron Oxide/Carbon Synthesized by the Arc Discharge Method in Liquid Media with the Addition of Ammonia,” Jurnal Kimia Sains dan Aplikasi, vol. 21, no. 4, pp. 166–170, Oct. 2018, doi: 10.14710/jksa.21.4.166-170.

P. Ranjan, S. Agrawal, A. Sinha, T. R. Rao, J. Balakrishnan, and A. D. Thakur, “A Low-Cost Non-explosive Synthesis of Graphene Oxide for Scalable Applications,” Sci Rep, vol. 8, no. 1, Dec. 2018, doi: 10.1038/s41598-018-30613-4.

M. A. Correa-Ochoa, J. Rojas, L. M. Gómez, D. Aguiar, C. A. Palacio-Tobón, and H. A. Colorado, “Systematic Search Using the Proknow-C Method for the Characterization of Atmospheric Particulate Matter Using the Materials Science Techniques XRD, FTIR, XRF, and Raman Spectroscopy,” Jun. 01, 2023, MDPI. doi: 10.3390/su15118504.

V. Harish et al., “Review on Nanoparticles and Nanostructured Materials: Bioimaging, Biosensing, Drug Delivery, Tissue Engineering, Antimicrobial, and Agro-Food Applications,” Feb. 01, 2022, MDPI. doi: 10.3390/nano12030457.

A. O. Adeola, M. P. Duarte, and R. Naccache, “Microwave-assisted synthesis of carbon-based nanomaterials from biobased resources for water treatment applications: emerging trends and prospects,” Frontiers in Carbon, vol. 2, Jul. 2023, doi: 10.3389/frcrb.2023.1220021.

Y. Cai et al., “Phototherapy in cancer treatment: strategies and challenges,” Dec. 01, 2025, Springer Nature. doi: 10.1038/s41392-025-02140-y.

S. Jafari, B. Mahyad, H. Hashemzadeh, S. Janfaza, T. Gholikhani, and L. Tayebi, “Biomedical applications of TiO2 nanostructures: Recent advances,” 2020, Dove Medical Press Ltd. doi: 10.2147/IJN.S249441.

O. C. Adekoya, G. J. Adekoya, R. E. Sadiku, Y. Hamam, and S. S. Ray, “Density Functional Theory Interaction Study of a Polyethylene Glycol-Based Nanocomposite with Cephalexin Drug for the Elimination of Wound Infection,” ACS Omega, vol. 7, no. 38, pp. 33808–33820, Sep. 2022, doi: 10.1021/acsomega.2c02347.

E. Serag, M. Helal, and A. El Nemr, “Curcumin Loaded onto Folic acid Carbon dots as a Potent drug Delivery System for Antibacterial and Anticancer Applications,” J Clust Sci, vol. 35, no. 2, pp. 519–532, Feb. 2024, doi: 10.1007/s10876-023-02491-y.

M. Usman and S. Cheng, “Recent Trends and Advancements in Green Synthesis of Biomass-Derived Carbon Dots,” Eng, vol. 5, no. 3, pp. 2223–2263, Sep. 2024, doi: 10.3390/eng5030116.

A. O. Adeola, M. P. Duarte, and R. Naccache, “Microwave-assisted synthesis of carbon-based nanomaterials from biobased resources for water treatment applications: emerging trends and prospects,” Frontiers in Carbon, vol. 2, Jul. 2023, doi: 10.3389/frcrb.2023.1220021.

G. Zheng et al., “Therapeutic applications and potential biological barriers of nano-delivery systems in common gastrointestinal disorders: a comprehensive review,” Apr. 01, 2025, Springer Science and Business Media B.V. doi: 10.1007/s42114-025-01292-3.

X. Yin et al., “Aptamer-functionalized nanomaterials (AFNs) for therapeutic management of hepatocellular carcinoma,” Dec. 01, 2024, BioMed Central Ltd. doi: 10.1186/s12951-024-02486-5.

S. Ding et al., “Overcoming blood–brain barrier transport: Advances in nanoparticle-based drug delivery strategies,” Jul. 01, 2020, Elsevier B.V. doi: 10.1016/j.mattod.2020.02.001.

M. Patil et al., “An insight of various vesicular systems, erythrosomes, and exosomes to control metastasis and cancer,” Jul. 01, 2023, Elsevier Inc. doi: 10.1016/j.adcanc.2023.100103.

P. Paul et al., “Nanomedicines for the management of diabetic nephropathy: present progress and prospects,” 2023, Frontiers Media SA. doi: 10.3389/fendo.2023.1236686.

S. Rezvantalab et al., “PLGA-based nanoparticles in cancer treatment,” Front Pharmacol, vol. 9, no. NOV, Nov. 2018, doi: 10.3389/fphar.2018.01260.

P. R. Kumbhar, P. Kumar, A. Lasure, R. Velayutham, and D. Mandal, “An updated landscape on nanotechnology-based drug delivery, immunotherapy, vaccinations, imaging, and biomarker detections for cancers: recent trends and future directions with clinical success,” Dec. 01, 2023, Springer. doi: 10.1186/s11671-023-03913-6.

H. Nsairat et al., “How Advanced are Self-Assembled Nanomaterials for Targeted Drug Delivery? A Comprehensive Review of the Literature,” 2025, Dove Medical Press Ltd. doi: 10.2147/IJN.S490444.

A. Sharma et al., “Advances in Lung Cancer Treatment Using Nanomedicines,” 2023, American Chemical Society. doi: 10.1021/acsomega.2c04078.

Y. Dutt et al., “Therapeutic applications of nanobiotechnology,” Dec. 01, 2023, BioMed Central Ltd. doi: 10.1186/s12951-023-01909-z.

L. Ding, P. Agrawal, S. K. Singh, Y. S. Chhonker, J. Sun, and D. J. Murry, “Polymer-Based Drug Delivery Systems for Cancer Therapeutics,” Mar. 01, 2024, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/polym16060843.

Z. Zhao, A. Ukidve, J. Kim, and S. Mitragotri, “Targeting Strategies for Tissue-Specific Drug Delivery,” Apr. 02, 2020, Cell Press. doi: 10.1016/j.cell.2020.02.001.

S. Khizar, N. Zine, A. Errachid, and A. Elaissari, “Introduction to Stimuli-Responsive Materials and Their Biomedical Applications,” in ACS Symposium Series, vol. 1436, American Chemical Society, 2023, pp. 1–30. doi: 10.1021/bk-2023-1436.ch001.

S. Senapati, A. K. Mahanta, S. Kumar, and P. Maiti, “Controlled drug delivery vehicles for cancer treatment and their performance,” Dec. 01, 2018, Springer Nature. doi: 10.1038/s41392-017-0004-3.

Y. Lee and D. H. Thompson, “Stimuli-responsive liposomes for drug delivery,” Sep. 01, 2017, Wiley-Blackwell. doi: 10.1002/wnan.1450.

F. Trotta et al., “Citation: A Review of Cyclodextrin Encapsulation and Intelligent Response for the Release of Curcumin,” 2022, doi: 10.3390/polym.

S. Bera and S. K. Bhunia, “Bright yellow fluorescent N-doped Ti3C2 MXene quantum dots as an ‘on/off/on’ nanoprobe for selective As3+ ion detection,” Nanoscale, Feb. 2025, doi: 10.1039/d4nr04139a.

Z. Zhao, A. Ukidve, J. Kim, and S. Mitragotri, “Targeting Strategies for Tissue-Specific Drug Delivery,” Apr. 02, 2020, Cell Press. doi: 10.1016/j.cell.2020.02.001.

L. Ding, P. Agrawal, S. K. Singh, Y. S. Chhonker, J. Sun, and D. J. Murry, “Polymer-Based Drug Delivery Systems for Cancer Therapeutics,” Mar. 01, 2024, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/polym16060843.

W. You et al., “Fluorescent carbon quantum dots with controllable physicochemical properties fantastic for emerging applications: A review,” Carbon Neutralization, vol. 3, no. 2, pp. 245–284, Mar. 2024, doi: 10.1002/cnl2.120.

B. Wang and S. Lu, “The light of carbon dots: From mechanism to applications,” Jan. 05, 2022, Cell Press. doi: 10.1016/j.matt.2021.10.016.

U. e. Kalsoom, R. Yi, J. Qu, and L. Liu, “Nonlinear Optical Properties of CdSe and CdTe Core-Shell Quantum Dots and Their Applications,” Apr. 20, 2021, Frontiers Media SA. doi: 10.3389/fphy.2021.612070.

S. Das, L. Ngashangva, and P. Goswami, “Carbon dots: An emerging smart material for analytical applications,” Micromachines (Basel), vol. 12, no. 1, pp. 1–36, Jan. 2021, doi: 10.3390/mi12010084.

T. Srinivasulu, K. Saritha, and K. T. R. Reddy, “Synthesis and characterization of Fe-doped ZnO thin films deposited by chemical spray pyrolysis,” Modern Electronic Materials, vol. 3, no. 2, pp. 76–85, Jun. 2017, doi: 10.1016/j.moem.2017.07.001.

U. e. Kalsoom, R. Yi, J. Qu, and L. Liu, “Nonlinear Optical Properties of CdSe and CdTe Core-Shell Quantum Dots and Their Applications,” Apr. 20, 2021, Frontiers Media SA. doi: 10.3389/fphy.2021.612070.

E. Serag, M. Helal, and A. El Nemr, “Curcumin Loaded onto Folic acid Carbon dots as a Potent drug Delivery System for Antibacterial and Anticancer Applications,” J Clust Sci, vol. 35, no. 2, pp. 519–532, Feb. 2024, doi: 10.1007/s10876-023-02491-y.

J. Qi et al., “Carbon Dots as Advanced Drug-Delivery Nanoplatforms for Antiinflammatory, Antibacterial, and Anticancer Applications: A Review,” ACS Appl Nano Mater, vol. 6, no. 11, pp. 9071–9084, Jun. 2023, doi: 10.1021/acsanm.3c01207.

D. Ozyurt, M. Al Kobaisi, R. K. Hocking, and B. Fox, “Properties, synthesis, and applications of carbon dots: A review,” Carbon Trends, vol. 12, p. 100276, Sep. 2023, doi: 10.1016/j.cartre.2023.100276.

D. S. Ghataty, R. I. Amer, M. A. Amer, M. F. Abdel Rahman, and R. N. Shamma, “Green Synthesis of Highly Fluorescent Carbon Dots from Bovine Serum Albumin for Linezolid Drug Delivery as Potential Wound Healing Biomaterial: Bio-Synergistic Approach, Antibacterial Activity, and In Vitro and Ex Vivo Evaluation,” Pharmaceutics, vol. 15, no. 1, p. 234, Jan. 2023, doi: 10.3390/pharmaceutics15010234.

D. S. Ghataty, R. I. Amer, M. A. Amer, M. F. Abdel Rahman, and R. N. Shamma, “Green Synthesis of Highly Fluorescent Carbon Dots from Bovine Serum Albumin for Linezolid Drug Delivery as Potential Wound Healing Biomaterial: Bio-Synergistic Approach, Antibacterial Activity, and In Vitro and Ex Vivo Evaluation,” Pharmaceutics, vol. 15, no. 1, p. 234, Jan. 2023, doi: 10.3390/pharmaceutics15010234.

H. Kaurav, D. Verma, A. Bansal, D. N. Kapoor, and S. Sheth, “Progress in drug delivery and diagnostic applications of carbon dots: a systematic review,” Front Chem, vol. 11, Jul. 2023, doi: 10.3389/fchem.2023.1227843.

H. Barhum et al., “In Brain Multi-Photon Imaging of Vaterite Drug Delivery Cargoes loaded with Carbon Dots,” 2023.

M. Zoghi, M. Pourmadadi, F. Yazdian, M. N. Nigjeh, H. Rashedi, and R. Sahraeian, “Synthesis and characterization of chitosan/carbon quantum dots/Fe2O3 nanocomposite comprising curcumin for targeted drug delivery in breast cancer therapy,” Int J Biol Macromol, vol. 249, p. 125788, Sep. 2023, doi: 10.1016/j.ijbiomac.2023.125788.

K. Sarkar et al., “Hyaluronic acid-graphene oxide quantum dots nanoconjugate as dual purpose drug delivery and therapeutic agent in meta-inflammation,” J Nanobiotechnology, vol. 21, no. 1, p. 246, Aug. 2023, doi: 10.1186/s12951-023-02015-w.

M. Yang et al., “Fe-doped carbon dots: a novel biocompatible nanoplatform for multi-level cancer therapy,” J Nanobiotechnology, vol. 21, no. 1, p. 431, Nov. 2023, doi: 10.1186/s12951-023-02194-6.

S. A. Mathew, P. Praveena, S. Dhanavel, R. Manikandan, S. Senthilkumar, and A. Stephen, “Luminescent chitosan/carbon dots as an effective nano-drug carrier for neurodegenerative diseases,” RSC Adv, vol. 10, no. 41, pp. 24386–24396, 2020, doi: 10.1039/D0RA04599C.

N. Dubey, S. Ramteke, N. K. Jain, T. Dutta, and A. L. Koner, “Glucose-derived carbon dots for targeted delivery of doxorubicin in cancer therapy,” New Journal of Chemistry, vol. 47, no. 35, pp. 16390–16398, 2023, doi: 10.1039/D3NJ02843G.

Y. Chai, Y. Feng, K. Zhang, and J. Li, “Preparation of Fluorescent Carbon Dots Composites and Their Potential Applications in Biomedicine and Drug Delivery—A Review,” Pharmaceutics, vol. 14, no. 11, p. 2482, Nov. 2022, doi: 10.3390/pharmaceutics14112482.

H. F. Etefa, A. A. Tessema, and F. B. Dejene, “Carbon Dots for Future Prospects: Synthesis, Characterizations and Recent Applications: A Review (2019–2023),” C (Basel), vol. 10, no. 3, p. 60, Jul. 2024, doi: 10.3390/c10030060.

C. W. H. Rajawasam et al., “Educational series: characterizing crosslinked polymer networks,” Dec. 19, 2023, Royal Society of Chemistry. doi: 10.1039/d3py00914a.

M. H. Tran, I. Booth, A. Azarakhshi, P. Berrang, J. Wulff, and A. G. Brolo, “Synthesis of Graphene and Graphene Films with Minimal Structural Defects,” ACS Omega, vol. 8, no. 43, pp. 40387–40395, Oct. 2023, doi: 10.1021/acsomega.3c04788.

S. Das, L. Ngashangva, and P. Goswami, “Carbon dots: An emerging smart material for analytical applications,” Micromachines (Basel), vol. 12, no. 1, pp. 1–36, Jan. 2021, doi: 10.3390/mi12010084.

Refbacks

  • There are currently no refbacks.