Pemodelan Perilaku Kelarutan Molekul Air terhadap Variasi Pelarut pada Permukaan CulnS2/ZnS Quantum Dots Menggunakan Pendekatan ab-initio berbasis Density Functional Theory

Adi Permadi

Abstract

This study investigates the solubility behavior of water molecules on the surface of CuInS₂/ZnS Quantum Dots (QDs) in different solvents using an Ab Initio approach based on Density Functional Theory (DFT). The research evaluates the influence of solvent dielectric constant on surface potential energy and solute-solvent interaction energy. The study reveals that hydrogen bonding, dipole-dipole interactions, and van der Waals forces significantly affect QDs stability and size. The findings indicate that solvents with higher dielectric constants destabilize nanoparticles, leading to electron transfer between particles. Among the tested solvents, chloroform provides an optimal balance between solubility, stability, and band gap (~1.68 eV). These results contribute to a deeper understanding of solvent-mediated effects on QDs, essential for their application in optoelectronics and bio-imaging.

Full Text:

PDF

References

K. A. Altammar, “A review on nanoparticles: characteristics, synthesis, applications, and challenges,” Front Microbiol, vol. 14, Apr. 2023, doi: 10.3389/fmicb.2023.1155622.

I. Khan, K. Saeed, and I. Khan, “Nanoparticles: Properties, applications and toxicities,” Arabian Journal of Chemistry, vol. 12, no. 7, pp. 908–931, Nov. 2019, doi: 10.1016/j.arabjc.2017.05.011.

I. O. M. Magalhães, B. J. C. Cabral, and J. B. L. Martins, “Ab Initio Approach to the Structure, Vibrational Properties, and Electron Binding Energies of H2S∙∙∙SO2,” Molecules, vol. 28, no. 18, p. 6656, Sep. 2023, doi: 10.3390/molecules28186656.

D. Esteve, “Foreword,” in C,H,N and O in Si and Characterization and Simulation of Materials and Processes, Elsevier, 1996, p. v. doi: 10.1016/B978-0-444-82413-4.50006-8.

H. Sun, “COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase ApplicationsOverview with Details on Alkane and Benzene Compounds,” J Phys Chem B, vol. 102, no. 38, pp. 7338–7364, Sep. 1998, doi: 10.1021/jp980939v.

L. Nanni, “A discussion on the relativistic corrections of the electronic structures of multi‐electron atoms,” Int J Quantum Chem, vol. 123, no. 19, Oct. 2023, doi: 10.1002/qua.27182.

C. D. Sherrill, “An Introduction to Hartree-Fock Molecular Orbital Theory,” 2000.

F. Arab, F. Nazari, and F. Illas, “Artificial Neural Network-Derived Unified Six-Dimensional Potential Energy Surface for Tetra Atomic Isomers of the Biogenic [H, C, N, O] System,” J Chem Theory Comput, vol. 19, no. 4, pp. 1186–1196, Feb. 2023, doi: 10.1021/acs.jctc.2c00915.

D. Beri, “Studi ab-initio Mekanisme Pembentukan Transisi Reaksi Oksidasi CO oleh No2 di Udara,” Jurnal Saintek, vol. 4, no. 2, pp. 108–115, 2012.

M. A. K. S., “Studi Komputasi Metode Ab Initio Dft Dalam Kajian Struktural Dan Sifat Elektronik Senyawa Kalsium Borohidrid-Diamonia Sebagai Penyimpan Hidrogen,” Jurnal Eksakta, vol. 15, no. 1–2, pp. 23–37, 2015, doi: 10.20885/eksakta.vol14.iss1-2.art3.

I. Abdul Rahman, dan Acep Purqon, K. Fisika Bumi dan Sistem Kompleks, and D. Fisika, Studi Density Functional Theory (DFT) dan Aplikasinya Pada Perhitungan Struktur Elektronik Monolayer MoS 2. 2015.

A. H. Mazurek, Ł. Szeleszczuk, and D. M. Pisklak, “Periodic DFT Calculations—Review of Applications in the Pharmaceutical Sciences,” Pharmaceutics, vol. 12, no. 5, p. 415, May 2020, doi: 10.3390/pharmaceutics12050415.

A. Deacon et al., “Understanding the ZIF-L to ZIF-8 transformation from fundamentals to fully costed kilogram-scale production,” Commun Chem, vol. 5, no. 1, p. 18, Feb. 2022, doi: 10.1038/s42004-021-00613-z.

B. Kaduk, T. Kowalczyk, and T. Van Voorhis, “Constrained Density Functional Theory,” Chem Rev, vol. 112, no. 1, pp. 321–370, Jan. 2012, doi: 10.1021/cr200148b.

T. Akdas, M. Haderlein, J. Walter, B. Apeleo Zubiri, E. Spiecker, and W. Peukert, “Continuous synthesis of CuInS 2 quantum dots,” RSC Adv, vol. 7, no. 17, pp. 10057–10063, 2017, doi: 10.1039/C6RA27052B.

C. T. Altaf, N. Abdullayeva, N. D. Sankir, and N. D. Sankir, “Copper‐Based Chalcopyrite and Kesterite Materials for Solar Hydrogen Generation,” in Photoelectrochemical Solar Cells, Wiley, 2018, pp. 251–303. doi: 10.1002/9781119460008.ch7.

M. Jorge, J. R. B. Gomes, and M. C. Barrera, “The dipole moment of alcohols in the liquid phase and in solution,” J Mol Liq, vol. 356, p. 119033, Jun. 2022, doi: 10.1016/j.molliq.2022.119033.

S.-H. Yoo, M. Todorova, D. Wickramaratne, L. Weston, C. G. Van de Walle, and J. Neugebauer, “Finite-size correction for slab supercell calculations of materials with spontaneous polarization,” NPJ Comput Mater, vol. 7, no. 1, p. 58, Apr. 2021, doi: 10.1038/s41524-021-00529-1.

J. Chen, Z. Xu, and Y. Chen, “Interaction of flotation reagents with mineral surface,” in Electronic Structure and Surfaces of Sulfide Minerals, Elsevier, 2020, pp. 237–305. doi: 10.1016/B978-0-12-817974-1.00006-5.

J. Kong et al., “Carbon Quantum Dots: Properties, Preparation, and Applications,” Molecules, vol. 29, no. 9, p. 2002, Apr. 2024, doi: 10.3390/molecules29092002.

J. D. Elliott, A. A. Papaderakis, R. A. W. Dryfe, and P. Carbone, “The electrochemical double layer at the graphene/aqueous electrolyte interface: what we can learn from simulations, experiments, and theory,” J Mater Chem C Mater, vol. 10, no. 41, pp. 15225–15262, 2022, doi: 10.1039/D2TC01631A.

N. M. Mwenze et al., “Electronic and vibrational spectroscopic study complemented with the computational evaluation of hydroxychloroquine mixed with silver nanoparticles,” Results Chem, vol. 10, p. 101711, Aug. 2024, doi: 10.1016/j.rechem.2024.101711.

A. M. Belenguer, G. I. Lampronti, A. J. Cruz-Cabeza, C. A. Hunter, and J. K. M. Sanders, “Solvation and surface effects on polymorph stabilities at the nanoscale,” Chem Sci, vol. 7, no. 11, pp. 6617–6627, 2016, doi: 10.1039/C6SC03457H.

J. Chen et al., “Perovskite quantum dot lasers,” InfoMat, vol. 2, no. 1, pp. 170–183, Jan. 2020, doi: 10.1002/inf2.12051.

C. Kittel, “Introduction to Solid State Physics,” Wiley, 2013.

S. K. Ghosh and T. Pal, “Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles: From Theory to Applications,” Chem Rev, vol. 107, no. 11, pp. 4797–4862, Nov. 2007, doi: 10.1021/cr0680282.

L. Wang, S. Zhang, Y. Zhang, and Q. An, “Piezodynamic therapy: Mechanisms and biomedical applications,” Nano Energy, vol. 110, p. 108342, Jun. 2023, doi: 10.1016/j.nanoen.2023.108342.

D. Acevedo and H. D. Abruna, “Electron-transfer study and solvent effects on the formal potential of a redox-active self-assembling monolayer,” J Phys Chem, vol. 95, no. 23, pp. 9590–9594, Nov. 1991, doi: 10.1021/j100176a098.

F. Yu et al., “Dispersion stability of thermal nanofluids,” Progress in Natural Science: Materials International, vol. 27, no. 5, pp. 531–542, Oct. 2017, doi: 10.1016/j.pnsc.2017.08.010.

D. Gentili and G. Ori, “Reversible assembly of nanoparticles: theory, strategies and computational simulations,” Nanoscale, vol. 14, no. 39, pp. 14385–14432, 2022, doi: 10.1039/D2NR02640F.

Refbacks

  • There are currently no refbacks.