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Abstract

This paper scrutinizes the simultaneous impacts of surface elasticity, initial stress, residual surface
stress and nonlocality on the nonlinear vibration of carbon nanotube conveying fluid resting while
resting on linear and nonlinear elastic foundations and operating in a thermo-magnetic
environment. The equation for vibration of the structures after decomposition into spatial and
temporal parts is solved by homotopy perturbation method. Parametric studies of the pertinent
parameters of the model are carried out. The investigations show that the positive and negative
surface stress abates and improves the frequency ratio, respectively. The surface effect and
frequency ratio are reduced as the length of the structure and nonlocality increase while the
magnetic field strength and the nonlocal parameter decreases as the frequency ratio is increases.
At a high temperature, the frequency ratio is inversely proportional with the temperature change
but directly proportional to the temperature change at room/low temperature. The work has
provided good understanding on the vibration behaviour of the nanotube and therefore, it will be
very useful in the design and control of structures.
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INTRODUCTION

After the discovery of nanostructures discovered by lijima [1], different studies on
the utilizations of nanomaterials have showed the importance of carbon nanotubes
(CNTs) for medical, industrial, electrical, thermal, electronic and mechanical applications
[2-5]. Vibration of the nanostructures have been studied but the simultaneous effects of
the surface energy and initial stress was not explored [6-13]. The effects of these
parameters have been found to be very significant in the vibration analysis of the
structures [13-20]. Therefore, Wang [13] presented a study where the effects of surface
energy on the vibration of CNTs were analyzed. Zhang and Meguid [14] investigated the
impacts of the surface energy on the vibration of nanobeams-carrying fluids. Hosseini et
al. [15] explored the significance of such energy on the instability characteristics of
cantilever piezoelectric CNTs carrying fluid while the influences of surface energy and
nonlocality were explored by Bahaadini et al. [16]. Other researchers [17-28] have used
different theories and method to examine the effects of surface stress and energy on the
nanostructures.

The impacts of initial stress on the vibration of CNTs have been observed [29-37].
However, the combined effects of surface behaviours, nonlocality and initial stress on the
physical characteristics and mechanical behaviours of CNTs have not been explored. Also,
such studies have not been extended to vibration characteristics of CNTs resting of elastic
foundations in a thermo-magnetic environment. Therefore, in this present study, the
scrutinizes the simultaneous impacts of surface elasticity, initial stress, residual surface
stress and nonlocality on the nonlinear vibration of carbon nanotube conveying fluid
resting while resting on linear and nonlinear elastic foundations and operating in a
thermo-magnetic environment. The equation for vibration of the structures after
decomposition into spatial and temporal parts is solved by homotopy perturbation
method. Parametric studies of the pertinent parameters of the model are carried out.

METHODS
Model Development

Consider a single-walled CNT of length L and outer and inner diameters Do and Di
resting on Winkler (Spring) and Pasternak (Shear layer) foundations as illustrated in
Figure 1. The figure illustrates SWCNTs carrying a hot fluid while resting on elastic
foundations under magnetic field.

Magnetic Field

Fluid Out

“—» Shear foundation
% % % Spring foundation

Figure 1. Carbon nanotube conveying hot fluid resting on elastic foundation

From Erigen’s nonlocal elasticity [38-39], the differential relations for stress and
strains for the CNTs is
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2 6 O-XX
Gxx _(eO ) axz = E‘C"xx (1)

The strain-displacement relation,

o*w(x,t)
w =L Y (2)
In case of small deformation, the strain-displacement relation
SR (3)
. ox?
Therefore,
Kool o*w
o, —(ea X = —Ez— 4
(&2) P~ (4)
Multiply Eq. (4) through by zdA
0*(20,) o°w
2 XX 2
UXXZdA—(eoa) TdA:—EZ ydA (5)
On integrating both sides of Eq. (8), we have
2 2
[ axxsz—(eoa)za—zijdiz—E ow [ 2dA (6)
A X" % X" %

Recall that the bending moment and second moment of area (area moment of inertia) are
given as

M = [20,,dA (7)
A
and
| = j 22dA (8)
A

Therefore, Eq. (6) can be written as

2 O°'M o*w
M —(e,a) " = —El v 9)

If Eq. (9) is differentiated twice, we have

o°M 2 0° (0°M o'w
e (%) y[?j*a Ed 1o)
Therefore,
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o'w  o°M » 0% [ O*M
El +——(ea) —| —— |= 11
oxt ox? (&3) ox2\ ox? (11)
If the effect of surface is considered, we have
‘w 0*M » 0% [ O*M
El + —_— =
(E1+E1) 2 (e 2
(12)
From the Euler beam theory,
0*M o*w
W = ey ? + ffluid flow finitial stress T faxialtension + fresidual surfacestress T ffoundation + fmagnetic - fthermal
(13)
The above forces are per unit length,
The axial force due to flow of fluid
O*w 0*w o*w
fo =m, —+m.u? +2um 14
fluid flow f atz f 8X8t f 8X8t ( )
The axial force because of initial stress
0 O°W
finitial stress 5A a A2 (15)
The axial force as a result of residual surface stress
o*w
fresidual surfacestress — H 87 (16)

The axial force because of axial tension/support

EA L(aw) | |o%w
faxialsupport = [EJ.O [&j dx:ly (17)

The force from the Winkler and Pasternak foundations is given as

f rouncation = KW —K gZTVZV +k,w? (18)
The magnetic force as a result of Lorentz force.
2w
fnagnetic = nH? AaT (19)
The axial force due to thermal effect
2
finermar = _% ZX\QV (20)
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Substituting Egs. (14) - (20) into Eq. (13), we have

o’M o’w o*w | EALfowY | |o°w
= (M, + M) —+2um; + —I — | dX|—
X ot oxot | 2L Y0\ ox OX
2 (21)
+ mfu2+§Aaf—Hs—77HfA—kp+EAaAT a—\Q/+klw+kaw3
1-2v ) ox

On putting Eq. (20) into Eq. (12), we arrived at

o*w o*w 2w | EALfowY | |o*w
(EI+ESIS)W+(mcn+mf) +2um, +{ IO (&J dx pva

o oxt | 2L
2
+(mfu2+5Aaf—Hs—77HX2A—k +EAO{AT)6—\2\/+klw+k3w3
P1-2v Jox

_(m +m )84—W+2um 84—W+ %JL ow de 54—W_
o axoet? "oxdot | 2L Yo\ ox ox*

S

2 )
—(e,) +(mfu2+§Ac;X —H,—nHIA-k, + o

EAaAT ) o'w

2 2 2
+k, ow, 3k,w’ 6_\/2v + 6kaw(a—wj
0 OX

X° X (22)

charne] wall slp L

No-slip flow ‘lp,- / Flow with sp

Figure 2. Effect of slip boundary condition on velocity profile [40, 41].

Figure 2 shows the effect of flow in a channel. In the fluid-conveying carbon
nanotube, the condition of slip is satisfied since in such flow, the ratio of the mean free
path of the fluid molecules relative to a characteristic length of the flow geometry which
is the Knudsen number is larger than 10-2. Consequently, the velocity correction factor
for the slip flow velocity is proposed as [40, 41]:

u : _
VCF = aadie (1, 5 k)| 4| 2% ( Kn j+1 (23)
u o, 1+ Kn

avg,no-slip %

Where in practice, ov=0.7 [40, 41]
2 -1 B
a =a,—|tan Kn 24
=2, [ tan” (aKn") (24)
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a,=— % _ (25)

372(1—4j
b

a, =4, b=-1and B = 0.04. Where b is the general slip coefficient

From Eq. (23),

2-0, Kn
uavg,slip = (1+ ak Kn)|:4( o J(l"' Knj+1:| uavg,no—slip (26)

'

Therefore, Eq. (22) can be written as

4 2 _ 2 i w2 2
El +E.I —6W+m +m a—W+2m 1+a,Kn)| 4 2-0, Kn +16W+% oW dxa—w
S's 4 cn f 2 f k 2

OX ot o 1+Kn oxot | 2L Yo\ ox OX

\

2
_ 2
+[mf |:(1+akKn){4[2 JV}( Kn j+1ﬂ +5Aaf—Hs—77HfA—kp+EAaAT a—\2/+klw+k3vv3
OX

(o 1+Kn 1-2v

\

i 4 _ 4 2 4]
(mcnﬁtmf)—aZWﬁZmf (1+aKn)| 4 2-0, ( Kn j+1 GSW + %JL(QJ dx 6_\:v
oX“ot lo 1+ Kn ox’ot | 2L Yo\ ox OX

\

—(e,a)°| +| m, | (1+aKn)| 4 270, ( Kn j+1 +5Aa;—Hs—anA—kp+EA“AT a_‘i" -0
K 1-2v | ox

o, 1+Kn

2 2 2
+k, a_vzv +3k,W° ow, 6ksw(@j
OX OX

o

(27)
where the transverse area and the bending rigidity are given as

A= rdh

3 7d®h
8

El

and

3 3
£l = 7zEsh(dSO +d?)

H, :ZTS(dO+di)

The symbol Hs is the parameter induced by residual surface stress, 7 is residual
surface tension, d and h are the nanotube internal diameter and thickness, respectively. It
should be noted that the diameter of the nanotube can be developed from chirality indices

(n, m).

d; :a—\/gxln2+mn+m2 (28)
T
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where a3 =0.246nm.”a” a”represents the length of the carbon-carbon bond. d is the inner
diameter of the nanotube.

Analytical Solutions of Nonlinear Model of Free Vibration of the nanotube

The nonlinear term in model in Eq. (27) makes it very difficult to provide closed-form
solution to the problem. Therefore, recourse is made to homotopy perturbation to solve
the nonlinear model. In order to develop analytical solutions for the developed nonlinear
model, the partial differential equation is converted to ordinary differential equation
using the Galerkin's decomposition procedure to decompose the spatial and temporal
parts of the lateral displacement functions as

w(x,t) = g(x)u(t)

Where u(t) the generalized coordinate of the system and ¢(x) is a trial/comparison
function that will satisfy both the geometric and natural boundary conditions.

(29)

Applying one-parameter Galerkin’s solution given in Eq. (29) to Eq. (27)

L
_[0 R(xt)g(x)dx (30)
where
4 2 2 2 2
R(xt)=(E1 +E1,) 2% 4 (m,, +m,) W+2m (1+akKn){4(2_UVj( Al )+1 ow, ﬁr(@j dx}é_‘g’
OX o, 1+Kn oxot | 2L 0\ ox OX

Kn

e

EAQAT
-2v

2
j+1ﬂ +5Aaf—Hs—77HX2A—kp+

+[m, {(u 3, Kn)HZ;VUV

82
+kw+kw
ox?

4 _ 4 2 4]

(m,, +m) ow ~+2m; (1+a,Kn)| 4 2=0, | _Kn_}.q 63W + %J‘L MY i 8_\iv
ox’ot’ o, J\1+Kn oxot | 2L -0\ ox OX

—(e,a)°| +| m, | (1+a,Kn)| 4 2-0, [ Kn j+1 +5Aa;’—HS—77HfA-kp+EA“AT a—‘i" =0
o, 1+Kn 1-2v | oXx
2 2
+k,— ow — +3k X \QI+6k3W(a—Wj
' ox 0 X

We have the nonlinear vibration equation of the pipe as

MUi(t) +Gu(t) + (K +C)u(t) +Vui(t) =0

where

M =(m, +mf){_|.0L¢2(x)dx—(eoa)2 IOL¢2(X)¥dx}

2—o0

Kn

(o}

G {2mf (1+akKn){4(
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K=" EI+EI)¢(x) dx+kD¢(x)dx (e, j¢(x)d¢ }

2-o0, Kn 2
m, {(l+akKn){4[ Vj(l " j+lﬂ 42 "
L @ 2 (L d'¢
C= o, +Kn |:.[0 ¢(X)de—(eoa) J-O ¢(X)d7d)(:|

EACAT
1-2v

V= k@.gé(x)dx e.a £3j¢(x) dx+6f¢(x)( jz J]
jqﬁ( ){ I(‘;@ }j ?dx eoa)z_fOL¢(X){%J-OL(Z—f] dx]%dx

The circular fundamental natural frequency gives

+5A0, —H,—nHZA-k_ +

K+C
W, =
M

(32)

For the simply supported pipe,

#(x) = sinB,x (33)
where

SinfL=0 = 2, :”T”
Eq. (33) can be written as

G(t) + pu(t) + au(t) + pu(t) =0 (34)

where

_(K+0C) Vv _E
M "B_M’ Ve

For an undamped simple-simple supported structures, where G = 0, we have

G(t) +au(t) + pu(t) =0 (35)
More on the principle of the decomposition can be found in our previous study [42].

Homotopy perturbation method

Homotopy perturbation methos is a total analytical power series method for solving
nonlinear equations. It is first proposed by He [43]. The method was also improved by He
[44-47]. Its basic principle is stated in the next section.

The basic idea of homotopy perturbation method
In order to establish the basic idea behind homotopy perturbation method, consider
a system of nonlinear differential equations given as
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AU)-f(r)=0, reQq, (36)

with the boundary conditions

B(u,a—ujzo, rerl, (37)
on
where A is a general differential operator, B is a boundary operator, f (r) a known

analytical function and I' is the boundary of the domain Q.

The operator A can be decomposed or divided into two parts, which are L and N, where L
is a linear operator, N is a non-linear operator. Eq. (36) can be therefore rewritten as
follows

L(u)+N(u)-f(r)=0. (38)

By the homotopy technique, a homotopyU (r, p):Qx[0,1] - R can be constructed, which

satisfies

H(U.p)=(1-p)[L(U)-L(U,)]+p[AU)- T (r)]=0, pefo] (39)

H(U,p)=L(U)-L(U,)+pL(U,)+p[N(U)-f(r)]=0. (40)

In the above Egs. (39) and (40), pe[0,1] is an embedding parameter, u, is an initial

approximation of equation of Eq.(36), which satisfies the boundary conditions.
Also, from Egs. (39) and Eq. (40), we will have

H(U,0)=L(U)-L(U,)=0, (41)

o H(U,1)=A(U)-f(r)=0. (42)

The changing process of p from zero to unity is just that of U (r, p)from u,(r) to u(r).

This is referred to deformation in topology. L(U)-L(U,) and A(U)-f(r)are called

0
homotopic.

Using the embedding parameter p as a small parameter, the solution of Egs. (39) and
Eqg. (40) can be assumed to be written as a power series in p as given in Eq. (43)

U=U,+pU,+p°U,+.. (43)

[t should be pointed out that of all the values of p between 0 and 1, p=1 produces the best
result. Therefore, setting p =1, results in the approximation solution of Eq. (44)

u:liqu =U, +U,+U, +... (44)
P!
Therefore

u=U,+U,+U, +... (45)

The series Eq. (45) is convergent for most cases.
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The basic idea expressed above is a combination of homotopy and perturbation
method. Hence, the method is called homotopy perturbation method (HPM), which has
eliminated the limitations of the traditional perturbation methods. On the other hand, this
technique can have full advantages of the traditional perturbation techniques.

Homotopy Perturbation Method to the Nonlinear Vibration Problem
The nonlinear model is solved in this section using homotopy perturbation method

(HPM). The approximate analytical method provides total analytical procedures and
solutions to the developed nonlinear model.
Using HPM, one can write an homotopy for Eq. (35) as

H(u,p)=(1-p)[ti+au]+p[i+au+pu®|=0, pe[0]] (46)
Or equivalently,

Y 3 _

H(u,p)=U+au+ p[ﬁu ]_O, pe[0,]] (47)
Taking the solution of Eq. (44) to be expressed in a series as:

U=U,+ pu, + pu, + p°u, +... (48)
Also, the constant a can be expanded as

a =} + pa} + p*al + plas +... (49)
Putting Egs. (48) and (49) into Eq.(47), gives

(U‘O + pui, + p’U, + p’u, +)+(a)02 + pa} + pPel + pPwl + ...)(uo +pu, + p°u, + piu, + )+

P (Uy + PU, + PU, + P, +...)3 =0

(50)
From Eq. (50), one can deduce that
p': U + @y, +wiu, + pud =0 (52)
p*: U, +wlu, + wu, + wiu, +3puiu, =0 (53)
p® 1 U, + @’U, + WU, + U, + WU, + 2,B(u§u2 + ufuo) =0 (54)
the initial conditions for the above equations are:
u,(0)=A, u,(0)=0, u;(0)=0, uy,(0)=0, (i=12..) (55)

On solving Eq. (51) one can easily obtain
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When the solution of u,in Eq. (56) into Eq.(52), we have

y 3AB Ap
U, + wlu, + (a)le-i- n Jcoswot +—"cos3w,t =0 57)
When the secular term in Eq. (52) is eliminated, one arrives at
»_ 3A°p
“TTT (58)

And the solution of Eq. (57) under the initial conditions of Eq. (55) becomes

u, =

A'B
3207 (cos3am,t —cosmyt) (59)

Putting the solution in Egs.(56) and (59) into Eq.(53), one arrives at

3B NP
64} 32w}

3 2 5 n2 5 n2
+ Aﬁa} A ,6’2 cossa)ot+3A ’82 cosbapt =0 (60)
205 128w, 12

0

U, + wu, +[aa>22 — jcoswot

On eliminating the secular term in Eq. (60), we have

2 SAB | Apor
64?2 (61)

Substituting Eq. (58) into Eq. (61), produces

Wl = 3A'5
2 128t (62)

Also, the solution of Eq. (60) under the initial conditions of Eq. (55) is

A5ﬂ2
u, = COSSw,t —Cosw,t
2 1024w, ( ° ) (63)
From Egs. (50), (51) and (58), for the the first-order approximate solution, when p =1,
we have
Z 3A'S

Oy = Wy =] — @] =,|a+ (64)

and
A'p
Uy, = Acosay,t +ﬂ(cos3a)ot —COS,t) (65)
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For the second-order approximate solution, when p =1, from Egs. (50), (51) and (58), we

have
2 2 2\? 4 2
Wy o1y = Wy —Q\/a+ﬂ—\/(a+3A 'Ej _3AP
’ 2 4 4 32
(66)
and
3 3 n2 3 5 n2
Uy, =| A= Aﬂz _AP 7 |COSa,t + AﬁZCOSSa)Ot+ Ap 7 COSSa,t
2w, 1024w, 32wy 1024w, (67)

Alternatively, if we substitute Egs. (56), (59) and (63) into Eq. (50), we have

u = Acosa,t + p Ap (cos3a,t —cosayt) |+ p? AP (cos5apt —cosa,t) |+
° 320} ° ° 1024; ° o )| (68)
For p =1, the approximation solution of Eq.(68) is
3 5 n2 3 5 n2
u(t)=| A- A ﬁz _AB Z coswot+A—ﬂ20033a)0t+%c055w0t+... 69
320} 10240 320} o, (69)

Putting Egs. (33) and (69) into Eq. (29), we have,

2

3207 10240

3 5 n2 3 5 n2
w(x,t):{(A— AP AP ]cosw0t+3A2ﬁcos3a)0t+%c055wot+..}sinnil_x

o 2
where
2
J2 3A? 3A? 3A" B
W, =— a+3BL_ ||y 3AE ) 3R (71)
2 4 4 32
Therefore,
A A'p : _ A 2 CO{JZE J””Sfﬂ [MsAjﬂJ 73;;’52
16[0:+3A2ﬂ— [a+3A2ﬂJ —SAAﬂz] 256[a+3A2ﬂ_ [a+3A2ﬁj _3A4,82]
4 4 32 4 4 32
R e e G D
16[a+3A2ﬁ (MsAzﬂj _3A“ﬂ2]
4 32
+ Ay 7 COSS{JE\/&+W—\/[05+M] _3Np Jt-v—...
2 2 92 402 2 4 4 32
256[a+3Aﬁ [a+3A ﬂj _3Ap
4 4 32

(72)

}

(70)

If the damped system is considered, the solutions of the first-order and the second-order

frequency ratio are

-68 -



Journal of Mechanical Engineering, Science, and

Olasunkanmi A. A et al. Innovation (JMESI)
3N’
Doan = 4|+ (73)
and
2 2 2 2\ 2 2 0\?
0, =| 2| 14388 | T+ o[ 14342 T || -4 1: 388 (7
’ 4a a 4o a 4o
Alternatively,
3A? 1 3A°
@4 o4, \/a+ 4’Bi\/ﬁ—/12[a+ 4’8) (75)

On substituting Eq. (74) into Eq. (70), we have

ﬁi%i “f HE “j 11 S EEAIEN e R
ST e e e

T }ﬁ“{{%fﬁ?lEziJHHﬁi;ﬁJ(ziH{uﬁf}?}z]w

(76)
RESULTS AND DISCUSSION

The results of the simulations are given in Figures 3-12. While Figure 3 illustrates the
verification of the present solution with the numerical solution using finite difference
method (FDM), the significance of the model parameters on the vibration of CNTs are
displayed in Figures 4-14.

Figure 4 illustrates the importance of the residual stress on the vibration
characteristics of the CNTs. It is presented that the dynamic response of the CNTs different
for negative and positive values of the residual stress. This establishes that the dynamic
behaviour of the fluid-carrying CNTs is sensitive to the sign of the residual stress.
Indisputably, as it is illustrated in the figure that at any given adimensional amplitude,
there is an increase in the frequency ratio when the negative value of the surface stress
increases while the ratio of the frequencies is lessened when the positive value of the
stress is augmented because the negative values of stress reduce the linear stiffness of the
nanostructure while the positive values of stress enhance the linear stiffness of the CNTs.

Figure 5 displays the significance of the stress, nonlocality and CNTs length on the
ratio of the frequencies of the structure. The figures illustrates that the frequency ratio
reduces when the CNTs length and thickness ratio are enhanced. It could also be stated
that nonlocal parameter reduces the influences of the energy and stress at the surface on
the frequency ratio. The results also display that the vibration frequency of the CNTs
considering surface energy and stress is larger than the vibration frequency of the CNTs
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given by the classical beam theory which does not consider the effect of surface energy
and stress. Also, the figures present a clear statement that when the CNTs length is
enlarged, the natural frequency of the nanotube gradually approaches the nonlinear
Euler-Bernoulli beam limit due to reduction in the surface effect. Therefore, high
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125+
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Figure 3. Comparison of HPM and FDM
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Figure 5. Frequency ratio vs CNTs length for difference nonlocality parameters
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Figure 7. Frequency ratio vs amplitude for difference nonlocality parameters

Frequency ratio

c

0 0.5 1 15 2 2.5 3

Nondimensional maximum amplitude (X)

Figure 8. Frequency ratio vs amplitude for difference temperature change at high
temperature

thickness ratios and long nanotube length make the impacts of the energy and stresses at
the surface on the frequency ratio to vanish.
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Figure 11. Linear and nonlinear dynamic behaviour of the nanostructure

Figure 6 analyzes the significance of initial stress on the vibration of the CNTs. It is
depicted at any adimensional amplitude and initial stress increases, there is an
enhancement in the ratio of the frequencies.
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Figure 12. Nonlocality and fluid flow velocity impacts on the natural frequency of the
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Figure 13. Slip and fluid flow velocity impacts on the natural frequency of the CNTs

Deflection, w(x,t) (x103 nm)

.
0 2 4 6 8 10 12 14 16 18 20
Time (sec)

Figure 14. CNTs dynamic behaviour when Kn=0.03

The nonlocality (nonlocal parameter) is a scaling parameter which makes the small-
scale effect to be accounted for in the analysis of microstructures and nanostructures.
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Figure 15. CNTs dynamic behaviour when Kn=0.05

Figure 7 depicts the effect of the nonlocality on the ratio of the frequencies reduces for
varying adimensional amplitude. The fundamental frequency ratio of the CNTs reduces as
the nonlocality is augmented. Also, the impact of the nonlocality on the ratio of the
frequencies reduces as the amplitude of the structure is enhanced.

The variations in the ratio of the frequencies with adimensional nonlocal parameter
for different temperature change are presented in Figures 8 and 9. In Figure 8, it is shown
that an enhancement in temperature change at high temperature causes reduction in the
ratio of the frequencies. However, at room or low temperature, the ratio of the frequencies
of the nanostructure enhances as the temperature change enhances as shown in Figure 8.
Also, the ratio of the frequencies at low temperatures is lower than at high temperatures.

The importance of magnetic field strength on the ratio of the frequencies of the
nanotube is given in Figure 10. It is illustrated that the ratio of the frequencies reduces
when the strength of the magnetic field enhances. Also, at high values of magnetic fields
and amplitude of vibration, the discrepancy between the nonlinear and the linear
frequencies is enhanced. A further investigation shows that the vibration of the CNTs
approaches linear vibration when the magnetic force strength enhances to a certain high
value. Such very high value of magnetic force strength which causes great attenuation in
the beam can be adopted as a control and instability strategy for the nonlinear vibration
system.

Figure 11 shows the comparison of the midpoint deflection of linear and nonlinear
vibrations of the nanostructure. The nonlinear term causes stretching effect in the
nonlinear in the nonlinear vibration. The significances of the nonlocal and slip parameters
on the flow-induced dynamic responses of CNTs are analyzed in Figures 12-15. The
enhancements of the nonlocal and slip parameters cause reduction in the vibration
frequency and critical velocity.

CONCLUSION

In the current paper, the simultaneous impacts of surface elasticity, initial stress,
residual surface tension and nonlocality on dynamic responses of CNTs carrying fluid
while resting elastic foundations in a thermo-magnetic environment have been explored
using methods of Galerkin decomposition and homotopy perturbation. The investigations
showed that the positive and negative surface stress abates and improves the frequency
ratio, respectively. The surface effect and frequency ratio are reduced as the length of the
structure and nonlocality increase while the magnetic field strength and the nonlocal
parameter decreases as the frequency ratio is increases. At a high temperature, the
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frequency ratio is inversely proportional with the temperature change but directly
proportional to the temperature change at room/low temperature. The present work will
be very useful in the design and control of carbon nanotubes in thermo-magnetic
environment while resting on elastic foundations.

Nomenclature

A Area of the nanotube

E Modulus of Elasticity
El bending rigidity

Hs residual surface stress
Hx magnetic field strength
I moment of area

Kn Knudsen number

L length of the nanotube

mc mass of tube per unit length

N axial/Longitudinal force

T change in temperature.

t time coordinate

w transverse displacement/deflection of the nanotube
w time-dependent parameter

X axial coordinate

$(X)  trial /comparison function

Oy coefficient of thermal expansion

n magnetic field permeability

Ov tangential moment accommodation coefficient
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