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Abstract  

This paper scrutinizes the simultaneous impacts of surface elasticity, initial stress, residual surface 

stress and nonlocality on the nonlinear vibration of carbon nanotube conveying fluid resting while 

resting on linear and nonlinear elastic foundations and operating in a thermo-magnetic 

environment. The equation for vibration of the structures after decomposition into spatial and 

temporal parts is solved by homotopy perturbation method. Parametric studies of the pertinent 

parameters of the model are carried out. The investigations show that the positive and negative 

surface stress abates and improves the frequency ratio, respectively. The surface effect and 

frequency ratio are reduced as the length of the structure and nonlocality increase while the 

magnetic field strength and the nonlocal parameter decreases as the frequency ratio is increases. 

At a high temperature, the frequency ratio is inversely proportional with the temperature change 

but directly proportional to the temperature change at room/low temperature. The work has 

provided good understanding on the vibration behaviour of the nanotube and therefore, it will be 

very useful in the design and control of structures. 
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INTRODUCTION  

After the discovery of nanostructures discovered by Iijima [1], different studies on 
the utilizations of nanomaterials have showed the importance of carbon nanotubes 
(CNTs) for medical, industrial, electrical, thermal, electronic and mechanical applications 
[2-5]. Vibration of the nanostructures have been studied but the simultaneous effects of 
the surface energy and initial stress was not explored [6-13]. The effects of these 
parameters have been found to be very significant in the vibration analysis of the 
structures [13-20]. Therefore, Wang [13] presented a study where the effects of surface 
energy on the vibration of CNTs were analyzed. Zhang and Meguid [14] investigated the 
impacts of the surface energy on the vibration of nanobeams-carrying fluids. Hosseini et 
al. [15] explored the significance of such energy on the instability characteristics of 
cantilever piezoelectric CNTs carrying fluid while the influences of surface energy and 
nonlocality were explored by Bahaadini et al. [16]. Other researchers [17-28] have used 
different theories and method to examine the effects of surface stress and energy on the 
nanostructures. 

The impacts of initial stress on the vibration of CNTs have been observed [29-37]. 

However, the combined effects of surface behaviours, nonlocality and initial stress on the 

physical characteristics and mechanical behaviours of CNTs have not been explored. Also, 

such studies have not been extended to vibration characteristics of CNTs resting of elastic 

foundations in a thermo-magnetic environment. Therefore, in this present study, the 

scrutinizes the simultaneous impacts of surface elasticity, initial stress, residual surface 

stress and nonlocality on the nonlinear vibration of carbon nanotube conveying fluid 

resting while resting on linear and nonlinear elastic foundations and operating in a 

thermo-magnetic environment. The equation for vibration of the structures after 

decomposition into spatial and temporal parts is solved by homotopy perturbation 

method. Parametric studies of the pertinent parameters of the model are carried out. 

 

METHODS 
Model Development 

Consider a single-walled CNT of length L and outer and inner diameters Do and Di 
resting on Winkler (Spring) and Pasternak (Shear layer) foundations as illustrated in 
Figure 1.  The figure illustrates SWCNTs carrying a hot fluid while resting on elastic 
foundations under magnetic field.  
 

 
Figure 1. Carbon nanotube conveying hot fluid resting on elastic foundation  

 
From Erigen’s nonlocal elasticity [38-39], the differential relations for stress and 

strains for the CNTs is 
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Multiply Eq. (4) through by zdA 
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On integrating both sides of Eq. (8), we have 
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Recall that the bending moment and second moment of area (area moment of inertia) are 
given as 
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Therefore, Eq. (6) can be written as 
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If Eq. (9) is differentiated twice, we have  
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Therefore,  
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If the effect of surface is considered, we have  
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From the Euler beam theory,  
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The above forces are per unit length,  
 
The axial force due to flow of fluid  

2 2 2
2

2
2fluid flow f f f

w w w
f m m u um

t x t x t

  
= + +

    
                                                                  (14) 

The axial force because of initial stress   
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The axial force as a result of residual surface stress   
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The axial force because of axial tension/support 
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The force from the Winkler and Pasternak foundations is given as 
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The magnetic force as a result of Lorentz force.    
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The axial force due to thermal effect   
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Substituting Eqs. (14) – (20) into Eq. (13), we have 
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On putting Eq. (20) into Eq. (12), we arrived at   
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Figure 2. Effect of slip boundary condition on velocity profile [40, 41]. 

 
Figure 2 shows the effect of flow in a channel. In the fluid-conveying carbon 

nanotube, the condition of slip is satisfied since in such flow, the ratio of the mean free 

path of the fluid molecules relative to a characteristic length of the flow geometry which 

is the Knudsen number is larger than 10-2. Consequently, the velocity correction factor 

for the slip flow velocity is proposed as [40, 41]: 
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Where in practice, σv =0.7 [40, 41] 
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1 4a = ,  b = -1 and B = 0.04. Where b is the general slip coefficient   

From Eq. (23),  
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Therefore, Eq. (22) can be written as  
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where the transverse area and the bending rigidity are given as 
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The symbol Hs is the parameter induced by residual surface stress,  is residual 

surface tension, d and h are the nanotube internal diameter and thickness, respectively. It 

should be noted that the diameter of the nanotube can be developed from chirality indices 

(n, m).  
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where 3 0.246a nm= . ”a” represents the length of the carbon-carbon bond. d is the inner 

diameter of the nanotube. 
 
Analytical Solutions of Nonlinear Model of Free Vibration of the nanotube  

The nonlinear term in model in Eq. (27) makes it very difficult to provide closed-form 
solution to the problem. Therefore, recourse is made to homotopy perturbation to solve 
the nonlinear model. In order to develop analytical solutions for the developed nonlinear 
model, the partial differential equation is converted to ordinary differential equation 
using the Galerkin’s decomposition procedure to decompose the spatial and temporal 
parts of the lateral displacement functions as  

( , ) ( ) ( )w x t x u t=                                                                                                   (29) 

Where ( )u t the generalized coordinate of the system and ( )x is a trial/comparison 

function that will satisfy both the geometric and natural boundary conditions. 
 
Applying one-parameter Galerkin’s solution given in Eq. (29) to Eq. (27)  
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We have the nonlinear vibration equation of the pipe as 
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V k x dx e a x dx x dx

dx dx

EA d d EA d d
x dx dx e a x dx dx

L dx dx L dx dx

 
  

   
 

   
= − +        

      
+ −      

         

  

   

 

The circular fundamental natural frequency gives  

n

K C

M


+
=                                                                                                                          (32) 

For the simply supported pipe,  

( ) nx sin x =                                                                                                         (33) 

where 

0 n

n
sin L

L


 =  =  

Eq. (33) can be written as  

3( ) ( ) ( ) ( ) 0u t u t u t u t  + + + =                                                                                                 (34) 

where 
( )

, , ,
K C V G

M M M
  

+
= = =                                                                             

For an undamped simple-simple supported structures, where G = 0, we have 

3( ) ( ) ( ) 0u t u t u t + + =                                                                                                         (35) 

 More on the principle of the decomposition can be found in our previous study [42]. 

Homotopy perturbation method 

Homotopy perturbation methos is a total analytical power series method for solving 
nonlinear equations. It is first proposed by He [43]. The method was also improved by He 
[44-47]. Its basic principle is stated in the next section. 

The basic idea of homotopy perturbation method 
In order to establish the basic idea behind homotopy perturbation method, consider 

a system of nonlinear differential equations given as 
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    ( ) ( ) 0, ,A U f r r− =                          (36) 

     with the boundary conditions 

    

, 0, ,
u

B u r


 
=  

 
                           (37) 

where A is a general differential operator, B is a boundary operator, ( )f r  a known 

analytical function and  is the boundary of the domain  . 
The operator A can be decomposed or divided into two parts, which are L and N, where L 
is a linear operator, N is a non-linear operator. Eq. (36) can be therefore rewritten as 
follows 

    ( ) ( ) ( ) 0.L u N u f r+ − =                          (38) 

By the homotopy technique, a homotopy ( )  , : 0,1U r p R →  can be constructed, which 

satisfies 

( ) ( ) ( ) ( ) ( ) ( )  , 1 0, 0,1 ,H U p p L U L U p A U f r p= − − + − =              (39) 

or
  

( ) ( ) ( ) ( ) ( ) ( ), 0.H U p L U L U pL U p N U f r = − + + − =          (40) 

In the above Eqs. (39) and (40),   0,1p  is an embedding parameter, ou is an initial 

approximation of equation of Eq.(36), which satisfies the boundary conditions. 
Also, from Eqs. (39) and Eq. (40), we will have 

( ) ( ) ( ),0 0,oH U L U L U= − =                         (41) 

or 

( ) ( ) ( ),1 0.H U A U f r= − =                         (42) 

The changing process of p from zero to unity is just that of ( ),U r p from ( )ou r
 
to ( )u r . 

This is referred to deformation in topology.  ( ) ( )oL U L U−  and ( ) ( )A U f r− are called 

homotopic. 
Using the embedding parameter p as a small parameter, the solution of Eqs. (39) and 

Eq. (40) can be assumed to be written as a power series in p as given in Eq. (43) 

2

1 2 ...oU U pU p U= + + +                         (43) 

It should be pointed out that of all the values of p between 0 and 1, p=1 produces the best 
result. Therefore, setting 1p = , results in the approximation solution of Eq. (44) 

1 2
1

lim ...o
p

u U U U U
→

= = + + +                                                  (44) 

Therefore 

1 2 ...ou U U U= + + +                                                                                                                          (45) 

The series Eq. (45) is convergent for most cases.  
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The basic idea expressed above is a combination of homotopy and perturbation 
method. Hence, the method is called homotopy perturbation method (HPM), which has 
eliminated the limitations of the traditional perturbation methods. On the other hand, this 
technique can have full advantages of the traditional perturbation techniques.  

Homotopy Perturbation Method to the Nonlinear Vibration Problem 
The nonlinear model is solved in this section using homotopy perturbation method 

(HPM). The approximate analytical method provides total analytical procedures and 
solutions to the developed nonlinear model.  
 
Using HPM, one can write an homotopy for Eq. (35) as  

( ) ( )   3, 1 0, 0,1H u p p u u p u u u p   = − + + + + =                      (46) 

Or equivalently,  

( )  3, 0, 0,1H u p u u p u p  = + + =                                                     (47) 

Taking the solution of Eq. (44) to be expressed in a series as: 

2 3

0 1 2 3 ...u u pu p u p u= + + + +                                                                             (48) 

Also,  the constant α can be expanded as 

2 2 2 2 3 3

0 1 2 2 ...p p p    = + + + +                                                                       (49) 

Putting Eqs. (48) and (49) into Eq.(47), gives 

( ) ( )( )

( )

2 3 2 2 2 2 3 2 2 3

0 1 2 3 0 1 2 3 0 1 2 3

3
2 3

0 1 2 3

... ... ...

... 0

u pu p u p u p p p u pu p u p u

p u pu p u p u

   



+ + + + + + + + + + + + + +

+ + + + =
                                                                    

     (50) 

     From Eq. (50), one can deduce that  

0 2

0 0: 0p u u+ =                                                                                                  (51) 

1 2 2 3

1 0 1 2 0 0: 0p u u u u  + + + =                                                                         (52) 

2 2 2 2 2

2 0 2 1 1 2 0 0 1: 3 0p u u u u u u   + + + + =                                                      (53) 

( )3 2 2 2 2 2 2

3 3 0 3 1 2 2 0 0 2 1 0: 2 0p u u u u u u u u u    + + + + + + =                                    (54)    

the initial conditions for the above equations are: 

0 0(0) , (0) 0, (0) 0, (0) 0, ( 1,2,...)i iu A u u u i= = = = =                            (55) 

On solving Eq. (51) one can easily obtain 
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0 0u Acos t=                                                                                                          (56) 

When the solution of 0u in Eq. (56) into Eq.(52), we have   

3 3
2 2

1 0 1 1 0 0

3
3 0

4 4

A A
u u A cos t cos t

 
   

 
+ + + + = 

                                      (57)
 

When the secular term in Eq. (52) is eliminated, one arrives at 

2
2

1

3

4

A 
 = −                                                                                                          (58) 

And the solution of Eq. (57) under the initial conditions of Eq. (55) becomes 

( )
3

1 0 02

0

3
32

A
u cos t cos t


 


= −

                                                                             (59)
 

Putting the solution in Eqs.(56) and (59) into Eq.(53), one arrives at 

3 25 2
2 2 1

2 0 2 2 02 2

0 0

3 2 5 2 5 2

1
0 02 2 2

0 0 0

3

64 32

3 3
3 5 0

32 128 128

AA
u u a cos t

A A A
cos t cos t


  

 

  
 

  

 
+ + − − 

 

 
+ + + = 
 

                                       (60)                                                                                                                                      

On eliminating the secular term in Eq. (60), we have 

2 24 2
2 1
2 2 2

0 0

3

64 32

AA 


 
= +

                                                                                         (61)
 

Substituting Eq. (58) into Eq. (61), produces 

4 2
2

2 2

0

3

128

A 



=

                                                                                                           (62)
 

Also, the solution of Eq. (60) under the initial conditions of Eq. (55) is 

( )
5 2

2 0 04

0

5
1024

A
u cos t cos t


 


= −

                                                                        (63)
 

From Eqs. (50), (51) and (58), for the the first-order approximate solution, when 1p = , 

we have  

2
2

0,1 0 1

3

4
th

A 
    = = − = +                                                                  (64) 

and 

( )
3

1 0 0 02

0

3
32

th

A
u Acos t cos t cos t


  


= + −

                                                        (65)
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For the second-order approximate solution, when 1p = , from Eqs. (50), (51) and (58), we 

have  

2
2 2 4 2

0,2 0

2 3 3 3

2 4 4 32
th

A A A  
   

 
= = + − + − 

                                (66) 

and
 

3 3 2 3 5 2

2 0 0 02 4 2 4

0 0 0 0

3 5
32 1024 32 1024

th

A A A A
u A cos t cos t cos t

   
  

   

 
= − − + + 
            (67) 

Alternatively, if we substitute Eqs. (56), (59) and (63) into Eq. (50), we have  

( ) ( )
3 5 2

2

0 0 0 0 02 4

0 0

3 cos 5 ...
32 1024

A A
u Acos t p cos t t p cos t cos t

 
    

 

   
= + − + − +   

   
        (68) 

For 1p = , the approximation solution of Eq.(68) is 

    

3 5 2 3 5 2

0 0 02 4 2 4

0 0 0 0

( ) 3 5 ...
32 1024 32 1024

A A A A
u t A cos t cos t cos t

   
  

   

 
= − − + + + 
 

   (69) 

Putting Eqs. (33) and (69) into Eq. (29), we have,  

3 5 2 3 5 2

0 0 02 4 2 4

0 0 0 0

( , ) 3 5 ...
32 1024 32 1024

A A A A n x
w x t A cos t cos t cos t sin

L

    
  

   

   
= − − + + +  
   

        (70) 

where   

2
2 2 4 2

0

2 3 3 3

2 4 4 32

A A A  
  

 
= + − + − 

 
                                              (71) 

Therefore,  

2
3 5 2 2 2 4 2

2
2 22 2 4 2 2 2 4 2

3

2
2 2 4 2

2 3 3 3

2 4 4 32
3 3 3 3 3 316 256

4 4 32 4 4 32

( , )

3 3 3
16

4 4 32

A A A A A
A cos t

A A A A A A

A
w x t

A A A

    
 

        



  
 

 
 
   

    
− − + − + −                 + − + − + − + −             

= +


 
+ − + − 

 

2
2 2 4 2

2
5 2 2 2 4 2

2
2

2 2 4 2

2 3 3 3
3

2 4 4 32

2 3 3 3
5 ...

2 4 4 32
3 3 3

256
4 4 32

A A A
cos t si

A A A A
cos t

A A A

  
 

   
 

  
 

 
 
 
 
 
 
 
 
 
  

   
+ − + −       

    
   

 
  

   + + − + − +           + − + −       

n x
n

L



 

                                                                                                                                               (72) 
If the damped system is considered, the solutions of the first-order and the second-order 
frequency ratio are  
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2

0,1

3

4
th

A 
 = +                                                                                                                 (73) 

and  

2 2
2 2 2 2 2

0,2 2 2

3 3 3
2 1 2 1 4 1

4 4 4
th

A A A    


    

            
= + −  + − − +            

            
     (74) 

Alternatively,  

2 2
2

0,2 2

3 1 3

4 4
th

A A

A

 
   

 
= +  − + 

 
                                                             (75) 

On substituting Eq. (74) into Eq. (70), we have 

3

2
2 2

2 2 2 2 2

2 2

5 2

2 2
2 2 2 2 2

2 2

3 3 3
32 2 1 2 1 4 1

4 4 4

3 3 3
1024 2 1 2 1 4 1

4 4 4

( , )

A
A

A A A

A

A A A

w x t



    

    



    

    

−
 
             

+ −  + − − +             
              

−

            
+ −  + − − +            

            

=

2
2 2

2 2 2 2 2

2 2

4

3

2 2 2 2

2

3 3 3
2 1 2 1 4 1

4 4 4

3 3
32 2 1 2 1

4 4

A A A
cos t

A

A A

    

    



   

  

 
 
 
 

    
                + −  + − − +                              
    

  
   

    

+

      
+ −  + −      

      

2
2 2

2 2 2 2 2

2 2 2
2 2

2

2

5 2

2 2 2

2

3 3 3
3 2 1 2 1 4 1

4 4 4
3

4 1
4

3 3
1024 2 1 2 1

4

A A A
cos t

A

A

A A

    

    


 



 

 

  
              

+ −  + − − +              
                         − +     

      

+

    
+ −  +    

    

2
2 2

2 2 2 2 2

4 2 2
2 2

2 2

2

3 3 3
5 2 1 2 1 4 1 ...

4 4 4
3

4 1
4 4

A A A
cos t

A

    

    
  

  

 



















                  

+ −  + − − + +               
                            − − +                





n x
sin

L

































                                                                                                                                               

               (76) 

RESULTS AND DISCUSSION 

The results of the simulations are given in Figures 3-12. While Figure 3 illustrates the 
verification of the present solution with the numerical solution using finite difference 
method (FDM), the significance of the model parameters on the vibration of CNTs are 
displayed in Figures 4-14. 

Figure 4 illustrates the importance of the residual stress on the vibration 
characteristics of the CNTs. It is presented that the dynamic response of the CNTs different 
for negative and positive values of the residual stress. This establishes that the dynamic 
behaviour of the fluid-carrying CNTs is sensitive to the sign of the residual stress. 
Indisputably, as it is illustrated in the figure that at any given adimensional amplitude, 
there is an increase in the frequency ratio when the negative value of the surface stress 
increases while the ratio of the frequencies is lessened when the positive value of the 
stress is augmented because the negative values of stress reduce the linear stiffness of the 
nanostructure while the positive values of stress enhance the linear stiffness of the CNTs. 

Figure 5 displays the significance of the stress, nonlocality and CNTs length on the 
ratio of the frequencies of the structure. The figures illustrates that the frequency ratio 
reduces when the CNTs length and thickness ratio are enhanced. It could also be stated 
that nonlocal parameter reduces the influences of the energy and stress at the surface on 
the frequency ratio. The results also display that the vibration frequency of the CNTs 
considering surface energy and stress is larger than the vibration frequency of the CNTs 
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given by the classical beam theory which does not consider the effect of surface energy 
and stress. Also, the figures present a clear statement that when the CNTs length is 
enlarged, the natural frequency of the nanotube gradually approaches the nonlinear 
Euler–Bernoulli   beam   limit   due   to  reduction  in  the  surface  effect.  Therefore,  high  

 
Figure 3. Comparison of HPM and FDM 

 
Figure 4. Frequency ratio vs amplitude for difference residual stresses  

 
Figure 5. Frequency ratio vs CNTs length for difference nonlocality parameters 
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Figure 6. Frequency ratio vs amplitude for difference initial stresses 

 
Figure 7. Frequency ratio vs amplitude for difference nonlocality parameters  

 
Figure 8. Frequency ratio vs amplitude for difference temperature change at high 

temperature 
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Figure 9. Frequency ratio vs amplitude for difference temperature change 

at low temperature                                             

 
Figure 10. Frequency ratio vs amplitude for difference magnetic field  

 

 
Figure 11. Linear and nonlinear dynamic behaviour of the nanostructure 

 
Figure 6 analyzes the significance of initial stress on the vibration of the CNTs. It is 
depicted at any adimensional amplitude and initial stress increases, there is an 
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Figure 12. Nonlocality and fluid flow velocity impacts on the natural frequency of the 

CNTs 

 
 Figure 13. Slip and fluid flow velocity impacts on the natural frequency of the CNTs 

 
Figure 14. CNTs dynamic behaviour when Kn=0.03  
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Figure 15. CNTs dynamic behaviour when Kn=0.05  

 
Figure 7 depicts the effect of the nonlocality on the ratio of the frequencies reduces for 
varying adimensional amplitude. The fundamental frequency ratio of the CNTs reduces as 
the nonlocality is augmented. Also, the impact of the nonlocality on the ratio of the 
frequencies reduces as the amplitude of the structure is enhanced.  
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frequency ratio is inversely proportional with the temperature change but directly 
proportional to the temperature change at room/low temperature. The present work will 
be very useful in the design and control of carbon nanotubes in thermo-magnetic 
environment while resting on elastic foundations. 

 
Nomenclature 
A Area of the nanotube 
E          Modulus of Elasticity 
EI         bending rigidity 
Hs           residual surface stress 
Hx            magnetic field strength 
I           moment of area 
Kn      Knudsen number 
L          length of the nanotube 
mc          mass of tube per unit length  
N          axial/Longitudinal force 
T          change in temperature.  
t           time coordinate 
w         transverse displacement/deflection of the nanotube 
W         time-dependent parameter                 
x           axial coordinate 

( )x     trial/comparison function 

x          coefficient of thermal expansion  
η        magnetic field permeability  
σv              tangential moment accommodation coefficient  
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