Landslide Susceptibility Zonation Using Analytic Hierarchy Process Method in the Karangbolong Hills Area, Indonesia

Susilowati Susilowati, Daniel Radityo, Dzikru Aminulloh, Ririn Wuri Rahayu

Abstract


The highest frequency of landslides in Kebumen Regency is observed in the Ayah Subdistrict and Buayan Subdistrict, which are in the southern part of the Karangbolong Hills. This area are the targets for the construction of the 14.03 km Ayah-Jladri Southern Cross Road (JJLS). Consequently, the objective of this study is to create a landslide susceptibility map utilizing the Analytic Hierarchy Process (AHP) methodology. Some causative factors are used to develop landslide susceptibility maps i.e. elevation, slope gradient, aspect and curvature, lithology and lineament density, distance from streams, land use and distance from roads. A total number of 128 landslide events are considered in the study. This method identified five susceptibility zones based on LSI value: very low (141.79-241.74), low (241.75-293.73), moderate (293.74-334.52), high (334.53-374.89), and very high (374.90-460.50). The landslide susceptibility map was validated, with an AUC value of 0.749, suggesting that the map provides good results.

Keywords


Landslide susceptibility; Analytic hierarchy process (AHP); Statistical analysis; Geographic information system (GIS)

Full Text:

PDF

References


Lynn M. Highland and Peter Bobrowsky, The Landslide Handbook-A Guide to Understanding Landslides. Reston, Virginia, U.S. Geological Survey Circular 1325, 2008.

D. Karnawati, S. Pengajar Pascasarjana Jurusan Teknik Sipil dan Jurusan Teknik Geologi, and F. Teknik, “The Mechanism of Rock Mass Movements as The Impact of Earthquacke; Geology Engineering Review and Analysis,” 2007.

Badan Pusat Statistik Kebumen, “Jumlah Kejadian Bencana Alam Menurut Kecamatan di Kabupaten Kebumen, 2022-2023,” Badan Pusat Statistik Kebumen. Accessed: Feb. 12, 2025. [Online]. Available: https://kebumenkab.bps.go.id/id/statistics-table/2/NDQyIzI=/jumlah-kejadian-bencana-alam-menurut-kecamatan-di-kabupaten-kebumen.html

Ian, “Pansela Jateng DIY Tertangani 247,17 Km,” Direktorat Jenderal Bina Marga. Accessed: Feb. 12, 2025. [Online]. Available: https://binamarga.pu.go.id/index.php/berita/pansela-jateng-diy-tertangani-24717-km

A. Hendratno and S. Dwi Kurniawan, “Studi Fasies Gunung Api Purba Karangbolong,” in Seminar Nasional Kebumian ke-11, Yogyakarta, Sep. 2018, pp. 982–995.

Badan Pusat Statistik Kebumen, “Sekilas Angka Kependudukan Kecamatan Ayah,” Badan Pusat Statistik Kebumen. Accessed: Feb. 12, 2025. [Online]. Available: https://kebumenkab.bps.go.id/id/news/2024/10/27/201/sekilas-angka-kependudukan-kecamatan-ayah.html

Badan Pusat Statistik Kebumen, “Kecamatan Buayan Dalam Angka 2018,” Kebumen, 2018.

Badan Standarisasi Nasional, SNI 8291:2024 Penyusunan Peta Zona Kerentanan Gerakan Tanah. Indonesia, 2024, pp. 1–20.

O. Hungr, S. Leroueil, and L. Picarelli, “The Varnes classification of landslide types, an update,” 2014, Springer Verlag. doi: 10.1007/s10346-013-0436-y.

Satria Danuningrat, “Evaluasi Geologi Teknik dan Analisis Kerentanan Gerakan Tanah Daerah Pembangunan Jalan Ayah-Jladri, Kabupaten Kebumen, Provinsi Jawa Tengah,” Universitas Gadjah Mada, Yogyakarta, 2022.

E. Erzagian, W. Wilopo, and T. F. Fathani, “Landslide Susceptibility Zonation Using GIS-Based Frequency Ratio Approach in the Kulon Progo Mountains Area, Indonesia,” 2023, pp. 115–126. doi: 10.1007/978-3-031-44296-4_3.

S. T. McColl and S. J. Cook, “A universal size classification system for landslides,” Landslides, vol. 21, no. 1, pp. 111–120, Jan. 2024, doi: 10.1007/s10346-023-02131-6.

B. Ahmed, “The root causes of landslide vulnerability in Bangladesh,” Landslides, vol. 18, no. 5, pp. 1707–1720, May 2021, doi: 10.1007/s10346-020-01606-0.

E. MacAfee, E. de Jong, and A. J. Lohr, “Leveraging local knowledge for landslide disaster risk reduction in an urban informal settlement in Manado, Indonesia,” International Journal of Disaster Risk Reduction, vol. 111, Sep. 2024, doi: 10.1016/j.ijdrr.2024.104710.

Badan Informasi Geospasial, “Geospasial untuk Negeri - Unduh Data Demnas,” Badan Informasi Geospasial. Accessed: Feb. 12, 2025. [Online]. Available: https://tanahair.indonesia.go.id/portal-web/unduh/demnas

Susilowati, I. Gde Budi Indrawan, and I. Wayan Warmada, “Geological and Geotechnical Assessment of Slope Stability Along Proposed Road of Ayah-Jladri Section, Kebumen, Central Java,” in AIP Conference Proceedings vol. 2891, AIP Publishing, May 2024. doi: 10.1063/5.0201253.

Badan Informasi Geospasial, “Geospasial untuk Negeri - Unduh Data RBI per Wilayah,” Badan Informasi Geospasial. Accessed: Feb. 12, 2025. [Online]. Available: Badan Informasi Geospasial

S. Panchal and A. K. Shrivastava, “Landslide hazard assessment using analytic hierarchy process (AHP): A case study of National Highway 5 in India,” Ain Shams Engineering Journal, vol. 13, no. 3, May 2022, doi: 10.1016/j.asej.2021.10.021.

F. El Bchari, B. Theilen-Willige, and H. Ait Malek, “Landslide hazard zonation assessment using GIS analysis at the coastal area of Safi (Morocco),” Proceedings of the ICA, vol. 2, pp. 1–7, Jul. 2019, doi: 10.5194/ica-proc-2-24-2019.

R. W. Saaty, “The Analytic Hierarchy Process-What It Is and How It Used,” 1987.

A. R. Rasyid, N. P. Bhandary, and R. Yatabe, “Performance of frequency ratio and logistic regression model in creating GIS based landslides susceptibility map at Lompobattang Mountain, Indonesia,” Geoenvironmental Disasters, vol. 3, no. 1, Dec. 2016, doi: 10.1186/s40677-016-0053-x.

C. Yu and J. Chen, “Application of a gis-based slope unit method for landslide susceptibility mapping in helong city: Comparative assessment of icm, ahp, and rf model,” Symmetry (Basel), vol. 12, no. 11, pp. 1–21, Nov. 2020, doi: 10.3390/sym12111848.

I. Sonker, J. N. Tripathi, and A. K. Singh, “Landslide susceptibility zonation using geospatial technique and analytical hierarchy process in Sikkim Himalaya,” Quaternary Science Advances, vol. 4, Oct. 2021, doi: 10.1016/j.qsa.2021.100039.

R. Das, P. Van Tien, K. W. Wegmann, and M. Chakraborty, “Machine learning-based assessment of regional-scale variation of landslide susceptibility in central Vietnam,” PLoS One, vol. 19, no. 10, p. e0308494, Oct. 2024, doi: 10.1371/journal.pone.0308494.

W. Wu, S. Guo, and Z. Shao, “Landslide risk evaluation and its causative factors in typical mountain environment of China: a case study of Yunfu City,” Ecol Indic, vol. 154, Oct. 2023, doi: 10.1016/j.ecolind.2023.110821.

D. Asmare and T. Hailemariam, “Assessment of rock slope stability using slope stability probability classification (SSPC) system, around AlemKetema, North Shoa, Ethiopia,” Sci Afr, vol. 12, Jul. 2021, doi: 10.1016/j.sciaf.2021.e00730.

N. Nepal, J. Chen, H. Chen, X. Wang, and T. P. Pangali Sharma, “Assessment of landslide susceptibility along the Araniko Highway in Poiqu/Bhote Koshi/Sun Koshi Watershed, Nepal Himalaya,” Progress in Disaster Science, vol. 3, Oct. 2019, doi: 10.1016/j.pdisas.2019.100037.

T. Mersha and M. Meten, “GIS-based landslide susceptibility mapping and assessment using bivariate statistical methods in Simada area, northwestern Ethiopia,” Geoenvironmental Disasters, vol. 7, no. 1, Dec. 2020, doi: 10.1186/s40677-020-00155-x.

D. Asmare, “Application and validation of AHP and FR methods for landslide susceptibility mapping around choke mountain, northwestern ethiopia,” Sci Afr, vol. 19, Mar. 2023, doi: 10.1016/j.sciaf.2022.e01470.

I. N. Manyoe and R. Hutagalung, “The extraction and analysis of lineament density from digital elevation model (dem) in libungo geothermal area, gorontalo,” in IOP Conference Series: Earth and Environmental Science, Institute of Physics, 2022. doi: 10.1088/1755-1315/1089/1/012012




DOI: https://doi.org/10.31284/j.jemt.2025.v5i2.7346

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Susilowati , Daniel Radityo, Dzikru Aminulloh, Ririn Wuri Rahayu

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.