Application of Point Counting Petrography for Provenance Determination; Implication for Tectonic Development from the Semilir Formation, Gunung Kidul
Abstract
The provenance sediments have been analyzed to reveal tectonic development during the Semilir Formation deposition in the Southern Mountain of Yogyakarta area, using essential samples from field observation, petrography analysis, and the point counting method. Outcrop and sampling at two observation points revealed distinct lithological features, including sandstone and siltstone with mudclast structures and slump structures interbedded with siderite. Petrographic analysis using the point-counting method determined the mineral composition of four samples: 1A, 1B, 2A, and 2B. Samples 1A and 1B were categorized as Lithic Wacke, 2A Feldspathic Wacke, and 2B Lithic Wacke. Provenance analysis, crucial for understanding the sedimentary history and reconstructing the geological events preceding sediment deposition, identified that the sandstones in the Ngoro-oro region predominantly fall into the magmatic arc category. Hence, based on our analysis, the tectonic development during Semilir Fm deposition is linked with the convergence event of the first subduction on southern Java, which had huge volcanic influences and slope morphology common in volcanic areas. The findings of this study contribute to a deeper understanding of the tectonosedimentary processes and geological history of the Ngoro-oro region. The integrated approach of petrographic and provenance analyses provides a comprehensive view of the sedimentary rocks formation and evolution, enriching the geological knowledge of the area.
Full Text:
PDFReferences
Garzanti, E., Vermeesch, P., and Andò, S., “Petrographic classification of sand and sandstone: A systematic approach,” Sediment. Geol., vol. 383, pp. 1–22, 2019, doi: 10.1016/j.sedgeo.2019.01.002.
Wang, J., Chen, J., and Xu, W., “Provenance analysis of forearc basin sediments in tectonically active settings: Insights from petrography and geochemistry,” Tectonophysics, vol. 791, 228554, 2020, doi: 10.1016/j.tecto.2020.228554.
Rossetti, D. F., Góes, A. M., and Nogueira, A. C. R., “Petrography and provenance of Miocene siliciclastic deposits in equatorial South America: Implications for Andean tectonics,” Sediment. Geol., vol. 421, 105959, 2021, doi: 10.1016/j.sedgeo.2021.105959.
Samodra, H., & Wiryosujono, S. (1989). Tinjauan tatanan stratigrafi dan tektonik Pegunungan Selatan Jawa Timur antara Pacitan–Ponorogo. P3G, Bandung..
Utami, P., Nugraha, A. M. S., and Rahardjo, S., “Sandstone petrography and provenance of Miocene sequences from the Kendeng Basin, Central Java,” J. Southeast Asian Earth Sci., vol. 210, 104912, 2021, doi: 10.1016/j.jseaes.2021.104912.
Setiawan, A., Wibowo, H., and Prasetyadi, C., “Petrographic and provenance analysis of volcaniclastic deposits in Central Java forearc basin,” Geosci. Front., vol. 13, no. 5, 101360, 2022, doi: 10.1016/j.gsf.2021.101360.
Santoso, B., Utami, P., and Satyana, A. H., “Volcaniclastic sequences and their provenance implications in Central Java, Indonesia,” Indones. J. Geosci., vol. 7, no. 3, pp. 221–236, 2020, doi: 10.17014/ijog.7.3.221-236.
Adhitama, F., Nugraha, A. M. S., and Santoso, B., “Provenance and depositional environment of volcaniclastic sandstones from the Southern Mountains, Java, Indonesia,” J. Asian Earth Sci., vol. 220, 104916, 2021, doi: 10.1016/j.jseaes.2021.104916.
Sari, N. M., Setiawan, A., and Handoko, A., “Petrography and geochemistry of volcaniclastic sandstones from East Java: Implications for Miocene tectonic evolution,” Mar. Petrol. Geol., vol. 152, 106479, 2023, doi: 10.1016/j.marpetgeo.2023.106479.
R. V. Ingersoll, T. F. Bullard, R. L. Ford, J. P. Grimm, J. D. Pickle, and S. W. Sares, “The effect of grain size on detrital modes: A test of the Gazzi–Dickinson point-counting method,” J. Sediment. Res., vol. 54, no. 1, pp. 103–116, 1984, doi: 10.1306/212F83B9-2B24-11D7-8648000102C1865D.
G. J. Weltje, “Quantitative analysis of detrital modes: Statistically rigorous confidence regions in ternary diagrams and their use in sedimentary petrology,” Earth-Sci. Rev., vol. 57, no. 3–4, pp. 211–253, 2002, doi: 10.1016/S0012-8252(01)00076-9.
P. Vermeesch, “Statistical models for point-counting data,” Earth Planet. Sci. Lett., vol. 501, pp. 1–7, 2018, doi: 10.1016/j.epsl.2018.08.019.
B. Kashyap and R. Sarmah, “Petrography and whole-rock geochemistry of the Miocene Bhuban Formation of Tripura Fold Belt, North District, Tripura, India: Implications for provenance, tectonic setting and weathering intensity,” J. Sediment. Environ., vol. 7, pp. 333–346, 2022, doi: 10.1007/s43217-022-00092-9.
M. Febbo, R. N. Tomezzoli, N. Cesaretti, G. Choque, N. Fortunatti, and G. Arzadún, “Petrography and tectonic provenance of the Permian Tunas Formation: Implications on the paleotectonic setting during the Claromecó Foreland Basin evolution, southwestern Gondwana margin, Argentina,” J. Palaeogeogr., vol. 11, no. 3, pp. 271–287, 2022, doi: 10.1016/j.jop.2022.06.001.
M. Melton, C. Baiyegunhi, and S. Masango, “Petrography, modal composition, and tectonic provenance of some selected sandstones from the Swaershoek and Alma Formations (Waterberg Group) and Glentig Formation, Limpopo Province, South Africa,” Arab. J. Geosci., vol. 15, p. 1042, 2022, doi: 10.1007/s12517-022-09989-1.
G. Blanco, P. Abre, H. Ferrizo, M. Gaye, P. Gamazo, J. Ramos, E. Alvareda, and A. Saracho, “Revealing weathering, diagenetic and provenance evolution using petrography and geochemistry: A case study from the Cretaceous to Cenozoic sedimentary record of the SE Chaco-Paraná Basin in Uruguay,” J. South Am. Earth Sci., vol. 103, p. 102974, 2020, doi: 10.1016/j.jsames.2020.102974.
Y. Song, Z. Liu, Q. Meng, Y. Wang, G. Zheng, and Y. Xu, “Petrography and geochemistry characteristics of the Lower Cretaceous Muling Formation from the Laoheishan Basin, Northeast China: Implications for provenance and tectonic setting,” Mineral. Petrol., vol. 111, pp. 161–176, 2017, doi: 10.1007/s00710-016-0476-9.
F. Safira, E. B. Purwasatriya, and A. K. Gibran, “Early to Middle Miocene dissected arc of Karangsambung Area: A case study of Waturanda and Penosogan Formations provenance,” J. Earth Mar. Technol., vol. 3, no. 2, pp. 124–140, 2023.
J. E. Ardine, S. U. Pratomo, C. Prasetyadi, M. O. B. Nugroho, and A. Rizky, “Depositional environment characteristic of the Late Miocene Kerek Formation in Kendeng Basin: A case from Cipluk Area, Kendal Regency, Central Java,” J. Earth Mar. Technol., vol. 4, no. 1, pp. 41–48, 2023.
Daryono, S. K., & Idarwati, I. (2024). Provenance and petrographic analysis of Paleogene sandstones in the Bukit Tigapuluh Area, Jambi Subbasin, Indonesia. Journal of Earth and Marine Technology, 4(2), 301–314.
B. Santoso, P. Utami, and A. H. Satyana, “Volcaniclastic sequences and their provenance implications in Central Java, Indonesia,” Indones. J. Geosci., vol. 7, no. 3, pp. 221–236, 2020, doi: 10.17014/ijog.7.3.221-236.
N. M. Sari, A. Setiawan, and A. Handoko, “Petrography and geochemistry of volcaniclastic sandstones from East Java: Implications for Miocene tectonic evolution,” Mar. Petrol. Geol., vol. 152, p. 106479, 2023, doi: 10.1016/j.marpetgeo.2023.106479.
DOI: https://doi.org/10.31284/j.jasmet.2025.v6i2.8198
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Alfathony Krisnabudhi, Aga Rizky, Dani Mardiati

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Mailing Address: Journal of Applied Sciences, Management and Engineering Technology - ITATS Institut Teknologi Adhi Tama Surabaya Jl. Arief Rahman Hakim No.100, Surabaya 60117 email: [email protected] Website : https://ejurnal.itats.ac.id/jasmet/index

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.