New Nanocomposite Membranes with blended Sulfonated Poly-Eugenol (S-PE) and Titanium Dioxide (TiO2) as an alternative in Direct Methanol Fuel Cells
Abstract
This study fabricated a novel sulfonated poly-eugenol/titanium dioxide nanocomposite membrane as an alternative polymer electrolite membrane (PEM) to direct methanol fuel cells (DMFCs), addressing the high cost of PEM, a major challenge for fuel cell (FC) commercialization. Sulfonated poly-eugenol (S-PE), synthesized by polymerizing eugenol with sulfuric acid, incorporated sulfonic acid groups to improve proton flows conductivity. Titanium Dioxide nanoparticles were incorporated into the sulfonated polymer matrix, forming a mixed membrane nanocomposite. Scanning electron microscopy confirmed a homogeneous TiO2 distribution in the polymer. The membranes' physicochemical properties, including air absorption, swelling, and methanol absorption, were evaluated and compared to commercial Nafion. The S-PE and TiO2nanocomposite membrane with 25% (S-PE) and 5% TiO2 exhibited higher water and methanol absorption than Nafion, but lower proton conductivity. However, its low methanol permeability can potentially improve fuel efficiency in direct methanol fuel cells. Incorporating TiO2 into sulfonated poly-eugenol represents a promising strategy for developing low-cost, efficient PEM for DMFCs applications.
Full Text:
PDFReferences
Z. Wang et al., “Green synthesis of olefin-linked covalent organic frameworks for hydrogen fuel cell applications,” Nature Portfolio, vol. 12, no. 1. 2021. doi: 10.1038/s41467-021-22288-9.
H. Junoh et al., Synthetic polymer-based membranes for direct methanol fuel cell (DMFC) applications. Elsevier Inc., 2020. doi: 10.1016/b978-0-12-818485-1.00015-0.
P. P. Kundu and A. Pal, “CATION EXCHANGE POLYMERIC MEMBRANES FOR FUEL CELLS,” De Gruyter, vol. 22, no. 3. 2006. doi: 10.1515/revce.2006.22.3.125.
Y. Sedesheva, В. А. Иванов, A. I. Wozniak, and A. Yegorov, “Proton-Exchange Membranes Based on Sulfonated Polymers,” Oriental Scientific Publishing Company, vol. 32, no. 5. pp. 2283–2296, 2016. doi: 10.13005/ojc/320501.
A. Balasubramanian, M. Gunasekaran, and T. Kannan, “Photo crosslinked stilbene-containing sulfonated polyimide membranes as proton exchange membranes in fuel cell,” Elsevier BV, vol. 176. p. 111418, 2022. doi: 10.1016/j.eurpolymj.2022.111418.
Y. Chen, Y. Meng, S. Wang, S. Tian, Y. Chen, and A. S. Hay, “Sulfonated poly(fluorenyl ether ketone) membrane prepared via direct polymerization for PEM fuel cell application,” Elsevier BV, vol. 280, no. 1–2. pp. 433–441, 2006. doi: 10.1016/j.memsci.2006.01.052.
M. F. A. Kamaroddin et al., “Membrane-Based Electrolysis for Hydrogen Production: A Review,” Multidisciplinary Digital Publishing Institute, vol. 11, no. 11. p. 810, 2021. doi: 10.3390/membranes11110810.
C. Liu et al., “Facile one-step fabrication of sulfonated polyhedral oligomeric silsesquioxane cross-linked poly(ether ether ketone) for proton exchange membranes,” Royal Society of Chemistry, vol. 9, no. 26. pp. 3624–3632, 2018. doi: 10.1039/c8py00650d.
H.-S. Park and C.-K. Hong, “Anion Exchange Membrane Based on Sulfonated Poly (Styrene-Ethylene-Butylene-Styrene) Copolymers,” Multidisciplinary Digital Publishing Institute, vol. 13, no. 10. p. 1669, 2021. doi: 10.3390/polym13101669.
M. P. Krafft and J. G. Riess, “Per- and polyfluorinated substances (PFASs): Environmental challenges,” Elsevier BV, vol. 20, no. 3. pp. 192–212, 2015. doi: 10.1016/j.cocis.2015.07.004.
A. L. Chibac and S. Coseri, “Advances in the use of cellulose-based proton exchange membranes in fuel cell technology: A review,” Elsevier BV, vol. 247. p. 125810, 2023. doi: 10.1016/j.ijbiomac.2023.125810.
M. Tawalbeh, A. Al‐Othman, A. Ka’ki, S. Mohamad, and M. F. Hassan, “Starch-chitosan-ionic liquids-based composite membranes for high temperature PEM fuel cells applications,” Elsevier BV. 2024. doi: 10.1016/j.ijhydene.2023.12.161.
F. A. Doobi and F. Q. Mir, “Exploring the Development of Natural Biopolymer (Chitosan)-Based Proton Exchange Membranes for Fuel Cells: A Review,” Elsevier BV, vol. 15. p. 100218, 2024. doi: 10.1016/j.rsurfi.2024.100218.
B. B. Munavalli, A. I. Torvi, and M. Y. Kariduraganavar, “A facile route for the preparation of proton exchange membranes using sulfonated side chain graphite oxides and crosslinked sodium alginate for fuel cell,” Elsevier BV, vol. 142. pp. 293–309, 2018. doi: 10.1016/j.polymer.2018.03.044.
M. Ulanowska and B. Olas, “Biological Properties and Prospects for the Application of Eugenol—A Review,” Multidisciplinary Digital Publishing Institute, vol. 22, no. 7. p. 3671, 2021. doi: 10.3390/ijms22073671.
Ngadiwiyana, Gunawan, N. B. A. Prasetya, T. D. Kusworo, and H. Susanto, “Synthesis and characterization of sulfonated poly(eugenol-co-allyleugenol) membranes for proton exchange membrane fuel cells,” Heliyon, vol. 8, no. 12, p. e12401, Dec. 2022, doi: 10.1016/J.HELIYON.2022.E12401.
N. Ngadiwiyana et al., “Synthesis, Characterization, and Study of Proton Exchange Polymer Membrane Properties of Sulfonated Copolymer Eugenol-diallyl Phthalate,” Indones. J. Chem., 2020, doi: 10.22146/ijc.55353.
E. C. Muliawati et al., “Membran campuran daripada poli(eugenol sulfonat) dan polieterimida sulfonat yang menjanjikan untuk sel bahan api metanol langsung,” Malaysian J. Anal. Sci., vol. 21, no. 3, pp. 659–668, 2017, doi: 10.17576/mjas-2017-2103-15.
C. Y. Wong et al., “Additives in proton exchange membranes for low- and high-temperature fuel cell applications: A review,” Elsevier BV, vol. 44, no. 12. pp. 6116–6135, 2019. doi: 10.1016/j.ijhydene.2019.01.084.
S. K. Aiswarya and S. Joseph, “Synthesis of methanol blocking PVA-TiO2 cation exchange membrane for direct methanol alkaline fuel cell,” Synth. Met., vol. 266, p. 116442, 2020, doi: https://doi.org/10.1016/j.synthmet.2020.116442.
N. Ngadiwiyana and N. Ngadiwiyana, “POLIMERISASI EUGENOL DENGAN KATALIS ASAM SULFAT PEKAT,” J. Kim. Sains dan Apl., 2005, doi: 10.14710/jksa.8.2.43-47.
D. S. Handayani, D. S. Handayani, T. Kusumaningsih, T. Kusumaningsih, M. Yuli, and M. Yuli, “Synthesis of co-poly(eugenol sulfonate)-DVB from eugenol as a major component of Syzygium aromaticum oils,” null, 2004, doi: 10.13057/biofar/f020202.
E. C. Muliawati et al., “Blends Membrane Promising for Direct Methanol Fuel Cell,” vol. 21, no. 3, pp. 659–668, 2017.
E. C. Muliawati and Y. W. Mirzayanti, “Membran Polieugenol Tersulfonasi (PET) sebagai Potensi Sel Bahan Bakar Metanol Langsung,” vol. 7, no. 2, pp. 247–256, 2021.
E. C. Muliawati et al., “Sulfonated PEI membrane with GPTMS-TiO2 as a filler for potential direct methanol fuel cell (DMFC) applications,” Malaysian J. Fundam. Appl. Sci., vol. 15, no. 4, pp. 555–560, 2019, doi: 10.11113/mjfas.v15n4.1216.
E. C. Muliawati, Budianto, A., & Hamid, A. (2021). Promising Potential of Eugenol (Clove) Based Organic Membrane for Polymer Electrolyte Membrane Fuel Cell. In Journal of Physics: Conference Series (Vol. 2117, No. 1, p. 012037). IOP Publishing.
E. C. Muliawati (2022). Desain Shell and Tube Heat Exchanger (STHE) Tipe Counter Current dengan Material Stainless Steel. Journal of Industrial Process and Chemical Engineering (JOICHE), 2, 2(2), 124-130. [28] E. C. Muliawati, Apryandi, F., Arsyad, A. A., Rahman, F., Al Ghifari, A. D., Yusuf, I., ... & Wiranto, I. (2023). Pengantar Fisika Dasar. CV. Gita Lentera.
E. C. Muliawati, Sukamto, K., Asnawi, I., Kusnanto, A., Ningsih, E., Azharman, Z., Kusumasari, F. C., ... & Muliawati, E. C. (2023). KIMIA DALAM INDUSTRI. CV. Gita Lentera.
Syam, S. M., Hapeni, R. S., & Muliawati, E. C. (2023). Pengaruh Suhu Dalam Penentuan Kapasitas Panas Kalorimeter dan Hubungan Konsentrasi NaOH Dalam Penentuan Panas Pelarutan juga Panas Netralisasi. In Prosiding SENASTITAN: Seminar Nasional Teknologi Industri Berkelanjutan (Vol. 3).
A. F. Elerian, A. A. A. Mohamed, E. M. Elnaggar, and M. A. Abu-Saied, “Development of novel proton exchange membranes based on cross-linked polyvinyl alcohol (PVA)/5-sulfosalicylic acid (SSCA) for fuel cell applications,” Discov. Appl. Sci., vol. 6, no. 7, 2024, doi: 10.1007/s42452-024-05940-z.
E. López-Chávez, Y. A. Peña-Castañeda, G. González-Garcia, F. de Landa Castillo-Alvarado, J. A. I. Díaz-Góngora, and A. Garcia-Quiroz, “Ion conduction and chemical and physical properties of sulfonated polyetherimide as membrane: Theoretical study,” Int. J. Hydrogen Energy, vol. 41, no. 48, pp. 23345–23353, 2016, doi: 10.1016/j.ijhydene.2016.09.035.
L. Modau, R. Sigwadi, T. Mokrani, and F. Nemavhola, “Chitosan Membranes for Direct Methanol Fuel Cell Applications,” Membranes (Basel)., vol. 13, no. 10, pp. 1–19, 2023, doi: 10.3390/membranes13100838.
L. Y. Zhu, Y. C. Li, J. Liu, J. He, L. Y. Wang, and J. Du Lei, “Recent developments in high-performance Nafion membranes for hydrogen fuel cells applications,” Pet. Sci., vol. 19, no. 3, pp. 1371–1381, Jun. 2022, doi: 10.1016/J.PETSCI.2021.11.004.
K. Hooshyari, B. Amini Horri, H. Abdoli, M. Fallah Vostakola, P. Kakavand, and P. Salarizadeh, “A review of recent developments and advanced applications of high-temperature polymer electrolyte membranes for pem fuel cells,” Energies, vol. 14, no. 17, 2021, doi: 10.3390/en14175440.
H. Wang and L. Yang, “Analysis of proton exchange membranes for fuel cells based on statistical theory and data mining,” iScience, vol. 27, no. 4, p. 109360, 2024, doi: 10.1016/j.isci.2024.109360.
C. O. Colpan, A. Fung, and F. Hamdullahpur, “2D modeling of a flowing-electrolyte direct methanol fuel cell,” J. Power Sources, vol. 209, pp. 301–311, 2012, doi: 10.1016/j.jpowsour.2012.03.001.
V. S. Silva, A. Mendes, L. M. Madeira, and S. P. Nunes, “Proton exchange membranes for direct methanol fuel cells: Properties critical study concerning methanol crossover and proton conductivity,” J. Memb. Sci., vol. 276, no. 1–2, pp. 126–134, 2006, doi: 10.1016/j.memsci.2005.09.037.
P. Khomein, W. Ketelaars, T. Lap, and G. Liu, “Sulfonated aromatic polymer as a future proton exchange membrane: A review of sulfonation and crosslinking methods,” Renew. Sustain. Energy Rev., vol. 137, p. 110471, 2021, doi: 10.1016/j.rser.2020.110471.
J. Mosa, A. Durán, and M. Aparicio, “Sulfonic acid-functionalized hybrid organic–inorganic proton exchange membranes synthesized by sol–gel using 3-mercaptopropyl trimethoxysilane (MPTMS),” J. Power Sources, vol. 297, pp. 208–216, 2015, doi: https://doi.org/10.1016/j.jpowsour.2015.06.119.
M. Purwanto et al., “Hubungan antara kekonduksian proton, sifat hidrofil dan kestabilan termal atas membran komposit kitosan/montmorillonit dengan modifikasi GPTMS dan prestasinya dalam sel bahan api metanol langsung,” Malaysian J. Anal. Sci., vol. 21, no. 3, pp. 675–689, 2017, doi: 10.17576/mjas-2017-2103-17.
A. A. Khan, I. A. Khan, M. I. Siyal, C. K. Lee, and J. O. Kim, “Optimization of membrane modification using SiO2 for robust anti-fouling performance with calcium-humic acid feed in membrane distillation,” Environ. Res., vol. 170, pp. 374–382, 2019, doi: 10.1016/j.envres.2018.12.036.
DOI: https://doi.org/10.31284/j.jasmet.2024.v5i1.6042
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Eka Cahya Muliawati
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Mailing Address: Journal of Applied Sciences, Management and Engineering Technology - ITATS Institut Teknologi Adhi Tama Surabaya Jl. Arief Rahman Hakim No.100, Surabaya 60117 email: [email protected] Website : https://ejurnal.itats.ac.id/jasmet/index
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.