HOSPITAL LENGTH OF STAY PREDICTION WITH ENSEMBLE LEARNING METHODE
Abstract
Full Text:
PDFReferences
Bacchi, S., Tan, Y., Oakden-Rayner, L., Jannes, J., Kleinig, T., & Koblar, S. (2022). Machine learning in the prediction of medical inpatient length of stay. In Internal Medicine Journal. https://doi.org/10.1111/imj.14962
Baldi, P., Brunak, S., Chauvin, Y., Andersen, C. A. F., & Nielsen, H. (2000). Assessing the accuracy of prediction algorithms for classification: An overview. In Bioinformatics (Vol. 16, Issue 5). https://doi.org/10.1093/bioinformatics/16.5.412
Boughorbel, S., Jarray, F., & El-Anbari, M. (2017). Optimal classifier for imbalanced data using Matthews Correlation Coefficient metric. PLoS ONE, 12(6). https://doi.org/10.1371/journal.pone.0177678
Buckland, M., & Gey, F. (1994). The relationship between Recall and Precision. Journal of the American Society for Information Science, 45(1). https://doi.org/10.1002/(SICI)1097-4571(199401)45:1<12::AID-ASI2>3.0.CO;2-L
Chrusciel, J., Girardon, F., Roquette, L., Laplanche, D., Duclos, A., & Sanchez, S. (2021). The prediction of hospital length of stay using unstructured data. BMC Medical Informatics and Decision Making, 21(1). https://doi.org/10.1186/s12911-021-01722-4
Daghistani, T. A., Elshawi, R., Sakr, S., Ahmed, A. M., Al-Thwayee, A., & Al-Mallah, M. H. (2019). Predictors of in-hospital length of stay among cardiac patients: A machine learning approach. International Journal of Cardiology, 288. https://doi.org/10.1016/j.ijcard.2019.01.046
Davis, J., & Goadrich, M. (2006). The relationship between precision-recall and ROC curves. ACM International Conference Proceeding Series, 148. https://doi.org/10.1145/1143844.1143874
Ho, Kam, T. (1998). The Random Subspace Method for Constructing Decision Forests. Ieee Transactions on Pattern Analysis and Machine Intelligence, 20(8), 832–844. %3CGo%0Ato
Ho, T. K. (1995). Random decision forests. Proceedings of the International Conference on Document Analysis and Recognition, ICDAR, 1, 278–282. https://doi.org/10.1109/ICDAR.1995.598994
Lequertier, V., Wang, T., Fondrevelle, J., Augusto, V., & Duclos, A. (2021). Hospital Length of Stay Prediction Methods: A Systematic Review. In Medical Care (Vol. 59, Issue 10). https://doi.org/10.1097/MLR.0000000000001596
Murugan, A., Nair, S. A. H., & Kumar, K. P. S. (2019). Detection of Skin Cancer Using SVM, Random Forest and kNN Classifiers. Journal of Medical Systems, 43(8). https://doi.org/10.1007/s10916-019-1400-8
Parker, C. (2011). An analysis of performance measures for binary classifiers. Proceedings - IEEE International Conference on Data Mining, ICDM. https://doi.org/10.1109/ICDM.2011.21
Shaik, A. B., & Srinivasan, S. (2019). A brief survey on random forest ensembles in classification model. In Lecture Notes in Networks and Systems. https://doi.org/10.1007/978-981-13-2354-6_27
Sokolova, M., Japkowicz, N., & Szpakowicz, S. (2006). Beyond accuracy, F-score and ROC: A family of discriminant measures for performance evaluation. AAAI Workshop - Technical Report, WS-06-06. https://doi.org/10.1007/11941439_114
Su, L., Xu, Z., Chang, F., Ma, Y., Liu, S., Jiang, H., Wang, H., Li, D., Chen, H., Zhou, X., Hong, N., Zhu, W., & Long, Y. (2021). Early Prediction of Mortality, Severity, and Length of Stay in the Intensive Care Unit of Sepsis Patients Based on Sepsis 3.0 by Machine Learning Models. Frontiers in Medicine, 8. https://doi.org/10.3389/fmed.2021.664966
DOI: https://doi.org/10.31284/j.jasmet.2023.v4i1.4437
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Dian Puspita Hapsari
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Mailing Address: Journal of Applied Sciences, Management and Engineering Technology - ITATS Institut Teknologi Adhi Tama Surabaya Jl. Arief Rahman Hakim No.100, Surabaya 60117 email: [email protected] Website : https://ejurnal.itats.ac.id/jasmet/index
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.