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Abstract 

 Data classification has several problems one of which is a large amount of data that will reduce 

computing time. SVM is a reliable linear classifier for linear or non-linear data, for large-scale 

data, there are computational time constraints. The Fractional gradient descent method is an 

unconstrained optimization algorithm to train classifiers with support vector machines that have 

convex problems. Compared to the classic integer-order model, a model built with fractional 

calculus has a significant advantage to accelerate computing time. In this research, it is to conduct 

investigate the current state of this new optimization method fractional derivatives that can be 

implemented in the classifier algorithm. The results of the SVM Classifier with fractional gradient 

descent optimization, it reaches a convergence point of approximately 50 iterations smaller than 

SVM-SGD. The process of updating or fixing the model is smaller in fractional because the 

multiplier value is less than 1 or in the form of fractions. The SVM-Fractional SGD algorithm is 

proven to be an effective method for rainfall forecast decisions. 

 

1. Introduction 

 

Large-scale data classification can be done using artificial intelligence, which can detect patterns from 

data then predict and provide conclusions automatically to users. Artificial intelligence can carry out 

predictive analyses that produce knowledge insights and are used as a basis for decision making. 

Predictive analysis is part of Knowledge Discovery in Databases (KDD) or Data Mining (DM) 

activities that use large-scale data sets to identify interesting patterns in past data sets to predict future 

conditions. In data mining tasks, the predictive analysis will involve machine learning methods that 

conduct supervised learning for large scale data. In some fields of research such as Pattern 

Recognition [1], Sentiment Analysis [2], Bioinformatics [3], Image Processing [4]. 

 

The most interesting topics in the field of machine learning are optimization. Numerical optimization 

algorithms extensively were finding local optima of any given function. Finding the best available 

values of some objective function given a defined domain (or input), including a variety of different 

types of objective functions and different types of domains, which works best with convex functions. 

Types of optimization algorithms for minimizing a loss function we used First Order Optimization 

Algorithms - Gradient descent method is commonly used to train classifiers by minimizing the error 

function. 

 

[5] Were introduce the classification optimization with the gradient method for large-scale data 

training and identify how optimization problems arise in machine learning and what makes them 

challenging. Through case studies on text classification and the training of deep neural networks, he 

discusses how optimization problems arise in machine learning, what makes them challenging 

including an investigation of two main streams of research on techniques that diminish noise in the 

stochastic directions and methods that make use of second-order derivative approximations. 
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To deal with large scale datasets and to factorize large scale matrices, different algorithms have been 

proposed. Stochastic gradient descent (SGD) algorithms much simple and efficient and are extensively 

used for matrix factorization [6] [7]. In the literature, different variants of gradient descent (GD) and 

stochastic gradient descent (SGD) have been suggested to increase performance in terms of accuracy 

and convergence speed. In both methods, parameters are updated iteratively manner to minimize the 

objective function.  

 

In GD, a specific iteration involves running through all the samples in the training set for a single 

update of a parameter, while in SGD, a single or a subset of samples from the training set is taken for 

parameter update. This makes GD highly computationally complex for large numbers of training 

samples. Thus a suitable choice for many classification applications involving large numbers of 

training samples is the SGD. Update rules for SGD based techniques involve integer order gradient 

descent. The integer order gradient descent based SGD can be further improved by applying 

fractional-order gradient descent using the concepts of fractional calculus as has been observed in 

different areas of research [8] recommender system, [9] motion analysis and [10] system 

identification.  

 

The purpose of this study is to conduct investigate the current state of the optimization method based 

on the fractional-order derivative conducted in the SVM classifier. The paper is organized as follows; 

Section II is devoted to the literature review of the fractional gradient method. Section III explained 

research and method for a classification task. Section IV result and discuss verify the proposed 

methods. At last, a conclusion is presented in Section V. 

1.1. Literature Review 

The optimization problem is generally formulated as a convex optimization problem because it is easy 

to solve the convex optimization problem than non-convex problems. After all, every local optimum is 

a global optimum in a convex optimization problem [11]. Generally, the categories of convex 

optimization problems are of two types: unconstrained convex optimization problem and constrained 

convex optimization problem. Constrained convex optimization problems are further of three types: 

equality constrained (EC), inequality constrained (IC) and hybrid constrained (HC) [12][13]. Gradient-

based methods are generally used for solving the unconstrained convex optimization problems. The 

Constrained convex optimization problem can be converted to the unconstrained convex optimization 

problem and then gradient-based methods can be applied to them [14] [15]. 

 

Definition 1. Let 𝑥: ℝ → ℝ × [𝑡0,
𝑇− 𝑡0

ℎ
] , 𝛼 ∈ (0,1)], 𝑥 ∈ 𝐶1then, the Grunwald-Letnikov (G-L) 

fractional derivative is given by; 

 

 𝑎
𝐺𝐿 𝒟𝑥

𝑣𝑓(𝑥) =  lim
ℎ→0

ℎ−𝑣  ∑ (
−𝑣

𝑘
)

[(𝑥−𝑎)/ℎ]

𝑘=0

𝑓(𝑥 − 𝑘ℎ), 

 

Definition 2.  𝑎
𝐺𝐿 𝒟𝑥

𝑣  Denotes the fractional differential operator based on G-L definition, (𝑥) denotes a 

differentiable function, V is the fractional-order,[𝑎,𝑥]is the domain of 𝑓(𝑥), Гis the gamma function, 

and is the rounding function.   

The Riemann-Liouville (R-L) fractional derivative is given by; 

 

 𝑎
𝑅𝐿 𝒟𝑥

𝑣𝑓(𝑥) =  
1

Г(𝑛 − 𝑣)
 

𝑑𝑛

𝑑𝑥𝑛
 ∫

𝑓(𝑦)

(𝑥 − 𝑦)𝑣−𝑛+1

𝑥

𝑎

 𝑑𝑦 

Where  𝑎
𝑅𝐿 𝒟𝑥

𝑣 denotes the fractional differential operator based on G-L definition; n = [v+1].  
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Definition 3. The Caputo fractional derivative is given by; 

 

 𝑎
𝐶 𝒟𝑥

𝑣𝑓(𝑥) =  
1

Г(𝑛 − 𝑣)
 ∫ (𝑥 − 𝑦)𝑛−𝑣−1

𝑥

𝑎

𝑓(𝑛)(𝑦) 𝑑𝑦 

 

Where  𝑎
𝐶 𝒟𝑥

𝑣 is the fractional differential operator based on Caputo definition, n = [v+1]. 

2. Method  

We can know that for the G-L and R-L definition, the fractional differential of a constant function is 

not equal to 0. Only with the Caputo definition, the fractional differential of a constant function equals 

0, which is consistent with the integer-order calculus. Therefore, the Caputo definition is widely used 

in solving engineering problems and it was employed to calculate the fractional-order derivative [16] 

[17]. The fractional-order derivative type (R-L) for 𝑓(𝑥)  =  𝐶 is not equal to zero so it is not 

recommended to be used in system modeling because it does not present a natural state or situation. 

Instead of the Caputo type for 𝑓(𝑥)  =  𝐶 is equal to zero so it is considered to be able to present a 

natural state for system modeling. 

In this section, the basic knowledge of fractional calculus is introduced. Fractional calculus is a branch 

of mathematical analysis, which studies the several different possibilities of defining real number or 

complex number powers of the derivative of a function. Different from integer calculus, the fractional 

derivative does not have a unified temporal definition expression up to now [14][18]. The commonly 

used definitions of the fractional derivative are Grünwald-Letnikov (G-L), Riemann-Liouville (R-L), 

and Caputo derivatives. 

Aguilar in his research proposed a fractional-order neural network (FONN) model with the Grünwald-

Letnikov fractional derivative [10]. Gradient Descent algorithm with a fractional-order derivative of 

Grünwald-Letnikov (G-L) type, have some advantage of the non-locality that the fractional calculus 

offers. The fractional-order learning algorithm can take several values of the fractional parameters 

alpha which allows being more accurate than the integer-order version. Improvement in accuracy and 

reduction of a number of the parameter was expected since the fractional-order derivative has infinite 

memory and non-locality properties. 

Bao in his research proposed a fractional-order deep backpropagation (BP) neural network model with 

Caputo derivative [19]. The proposed model had no limitations on the number of layers and the 

fractional-order was extended to an arbitrary real number bigger than 0. The numerical results support 

that the fractional-order BP neural networks with 𝐿2 regularization are deterministically convergent 

and can effectively avoid the overfitting phenomenon. 

Khan in his research proposed the radial basis function neural networks with Riemann–Liouville (R-L) 

derivative-based fractional gradient descent methods [20]. For the pattern classification problem, the 

proposed method demonstrated better accuracy in a fewer number of iterations. The proposed 

algorithm has shown better performance compared to the conventional RBF-NN in both, training and 

testing phases. For the problem of nonlinear system identification, the proposed framework achieved 

high convergence performance. 

From the results of the performance of the three types of fractional order derivative methods for 

classifying optimization, it is clear that the G-L type has the lowest performance. With a value of 

94.19% for training data and 93.65% for testing data on the classification tasks. Caputo types have the 

best performance of the three. With a value of 98.84% for training data and 95.00% for testing data on 

large scale data classification activities (data size = 10,000-60,000). 
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Figure 1. Fractional order gradient descent methods performance 

the training accuracy is slightly decreased but the testing accuracy significantly increased, which 

indicated that Caputo type suppresses overfitting and improves the generalization of the classifier. 

Then, the stability and convergence of the classifier converged fast and stably and were finally close to 

zero.  

3. Result and Discussion 

To verify the convergence of the proposed Fractional-order Gradient Descent SVM algorithm, 

simulation has been done on the Iris dataset and the Rainfall dataset. For the simulation, we have a 

rainfall dataset with 1825 record data for 1095 training samples and 730 testing samples data. The 

Rainfall dataset is collected from ground-based meteorological data from Maritim Perak Station (ID 

WMO:  96937).  For the assessment of the algorithms results, cross-validation and external testing 

were carried out. The datasets were divided into two subsets, training and test, comprising 80% and 

20% of the original samples, respectively. The training set takes 80% of the samples randomly from 

the dataset as the training set. Test set we used other data remaining in the data set, which contained 

all the attributes except the rainfall data that the model is supposed to predict. The test set was never 

used for the training of any of the models. 

Table 1. Error Rate for Data Iris and Data Rainfall 

Data 
Learning Rate 

Metode 

Stochastic Caputo 

Iris 

Linear 

0,01 0 0 

0,001 3,9624E-88 3,9943E-88 

0,0001 6,5161E-10 6,5032E-10 

Non Linear 

0,01 0 0 

0,001 6,6462E-88 6,7129E-88 

0,0001 1,093E-09 1,0931E-09 

Rainfall 

Linear 

0,01 0,2739597 0,27444902 

0,001 0,27484916 0,2750229 

0,0001 0,27519991 0,27518994 

Non Linear 

0,01 0,27313254 0,27313254 

0,001 0,273066 0,273066 

0,0001 0,2730784 0,27308246 
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In experiments conducted using rainfall data, the program runs a maximum of 1000 iterations so that it 

can be seen in the iteration of how many SVM-SGD and SVM-Fractional GD reach convergence. 

SVM classifier uses stochastic gradient descent optimization with 0.01, 0.001, 0.0001 a learning rate. 

Fractional gradient descent as SVM classifier optimization is also given the same learning rate value.  

The results of the SVM Classifier with stochastic gradient descent optimization reach the convergence 

point at iteration 350. With a learning rate of 0.0001 with error rate = 0.273078, at learning rate 0.001 

with error rate = 0.273066, and at learning rate 0.01 with error rate = 0.273132. For the results of the 

SVM Classifier with fractional gradient descent optimization, it reaches a convergence point of 

approximately 50 iterations smaller than SVM-SGD. With a learning rate of 0.0001 with an error rate 

= 0.273083, a learning rate of 0.001 with an error rate = 0.273070, lastly with a learning rate of 0.01 

with an error rate = 0.273134. 

4. Conclusions 

The purpose of this study is to investigate the current state of the optimization method based on the 

Fractional stochastic gradient descent conducted on the Support Vector Machine classifier. Based on 

the findings of this study, it is possible to make an overview of the dominant optimization method 

based on gradient descent. We model the model parameters by using the Fractional SGD algorithm to 

optimize the model parameters. For the results of the SVM Classifier with fractional gradient descent 

optimization, it reaches a convergence point of approximately 50 iterations smaller than SVM-SGD. 

With a learning rate of 0.0001 with an error rate = 0.273083, a learning rate of 0.001 with an error rate 

= 0.273070, lastly with a learning rate of 0.01 with an error rate = 0.273134. The SVM-Fractional 

SGD algorithm is proven to be an effective method for rainfall forecast decisions. The SVM-

Fractional SGD algorithm is proven to be an effective method for rainfall forecast decisions. The 

process of updating w or fixing the model is smaller in fractional because the multiplier value is less 

than 1 or in the form of fractions. For future studies, it is possible to implement an optimization 

method based on the fractional-order derivative for other classifiers such as SVM for a sparse dataset. 
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