Studi Eksperimental Pengaruh Tebal dan Jenis Magnet terhadap Respon Peralihan Pendulum Berperedam Arus Eddy

Dony Pratama Putra, Nahrowi Aditya Darmawan, Ardi Noerpamoengkas

Abstract

Penelitian ini menggunakan arus eddy untuk meredam gerak pendulum. Pendulum yang digunakan memiliki dua sisi lengan pendulum. Satu sisi lengan pendulum yang menggantung diberi massa beban pada ujungnya, dan sisi lengan yang lain diberi magnet pada ujungnya. Tebal magnet divariasikan 5 mm, 10 mm, dan 15 mm. Jenis magnet divariasikan neodymium 52, neodymium 35, dan ferrit. Hasil penelitian diketahui bahwa tebal magnet paling besar dan jenis magnet neodymium 52 menyebabkan settling time respon pendulum paling cepat. Kedua kondisi tersebut memberikan redaman yang paling besar pada getaran pendulum.

Keywords

Arus eddy; getaran; magnet; pendulum; settling time

Full Text:

PDF

References

S. S. Rao, Mechanical Vibrations, 5th ed. Upper Saddle River: Pearson Education, Inc, 2011.

M. A. Abdel-Hafiz and G. A. Hassaan, “Minimax Optimization Of Dynamic Pendulum Absorbers For A Damped Primary System,” International Journal of Scientific & Technology Research, vol. 3, no. 9, 2014.

W. Wang, Z. Yang, X. Hua, Z. Chen, X. Wang, and G. Song, “Evaluation of a pendulum pounding tuned mass damper for seismic control of structures,” Eng Struct, vol. 228, p. 111554, Feb. 2021.

H. E. Abd-El-Mottaleb and T. A. Sakr, “Multiple Connected Pendulum TMD (MCPTMD) For Vibration Control of Structures,” International Journal of Scientific & Technology Research, vol. 10, no. 05, pp. 266–273, 2021.

G. B. Colherinhas, M. A. M. Shzu, S. M. Avila, and M. V. G. D. Morais, “Wind Tower Vibration Controlled by a Pendulum TMD using Genetic Optimization: Beam Modelling,” Procedia Eng, vol. 199, pp. 1623–1628, Jan. 2017.

V. J. García, E. P. Duque, J. A. Inaudi, C. O. Márquez, J. D. Mera, and A. C. Rios, “Pendulum tuned mass damper: optimization and performance assessment in structures with elastoplastic behavior,” Heliyon, vol. 7, no. 6, p. e07221, Jun. 2021.

F. Dos, S. Oliveira, J. L. v de Brito, and S. M. Avila, “Design criteria for a pendulum absorber to control high building vibrations,” 11th International Conference on Vibration Problems, 2013.

G. B. Colherinhas et al., “Genetic optimization analysis of wind tower vibrations controlled by a pendulum TMD,” Revista Interdisciplinar de Pesquisa em Engenharia, vol. 2, no. 13, pp. 103–119, Jan. 2017.

G. B. Colherinhas, M. A. M. Shzu, S. M. Avila, and M. V. G. de Morais, “A parametric study of a tower controlled by a pendulum tuned mass damper: beam modelling,” MATEC Web of Conferences, vol. 211, p. 14006, Oct. 2018.

S. Hassani and M. Aminafshar, “Optimization of pendulum tuned mass damper in tall building under horizontal earthquake excitation,” Bulletin de la Société Royale des Sciences de Liège [En ligne], vol. 85, pp. 514–531, Jan. 2016.

L. D. Viet, N. D. Anh, and H. Matsuhisa, “Vibration control of a pendulum structure by a dynamic vibration absorber moving in both normal and tangential directions,” Proc Inst Mech Eng C J Mech Eng Sci, vol. 225, no. 5, pp. 1087–1095, Apr. 2011.

L. Duc Viet and Y. Park, “Vibration control of the spherical pendulum by dynamic vibration absorber moving in radial direction,” in Proceedings of the Korean Society for Noise and Vibration Engineering Conference, 2010, pp. 83–88.

M. F. Younes, “Numerical study for dynamic vibration absorber using Coriolis force for pendulum system,” Journal of American Science, vol. 11, no. 12, 2015.

M. F. Younes, “Optimal Design of Dynamic Vibration Absorber for Rolling Systems,” 18th International Conference on Applied Mechanics and Mechanical Engineering, 2018.

L. D. Viet and Y. Park, “Vibration control of the axisymmetric spherical pendulum by dynamic vibration absorber moving in radial direction,” Journal of Mechanical Science and Technology 2011 25:7, vol. 25, no. 7, pp. 1703–1709, Jul. 2011.

A. Noerpamoengkas, H. L. Guntur, and S. Y. Zamrisyaf, “Modeling Flat Pendulum and Simulating Its Validation at The Pendulum-Flat Pontoon Model Sea Wave Electric Generator Application.” Institut Teknologi Adhi Tama Surabaya, Jurnal IPTEK, 2013.

A. Noerpamoengkas and M. Ulum, “PEMODELAN GERAK PENDULUM VERTIKAL PADA KONVERTER ENERGI GELOMBANG BERINERSIA TAMBAHAN SAAT RESONANSI,” Jurnal IPTEK, vol. 21, no. 1, pp. 61–68, May 2017.

A. Noerpamoengkas and M. Ulum, “Pemodelan Pengaruh Frekuensi dan Amplitudo Eksitasi terhadap Respon Gerak dan Daya Mekanis Pendulum Vertikal pada Konverter Energi Gelombang Laut,” in Seminar Nasional Sains dan Teknologi Terapan III, 2015, pp. 201–210.

R. Ramadhan and A. Noerpamoengkas, “PEMODELAN DAN ANALISIS PENGARUH JARAK DAN MASSA DVA TERHADAP RESPON GETARAN MASSA UTAMA DENGAN TRIPLE-DVA TERSUSUN SERI,” Prosiding Seminar Nasional Sains dan Teknologi Terapan, vol. 9, no. 1, pp. 478–484, Oct. 2021.

W. M. Fiqih and A. Noerpamoengkas, “PEMODELAN DAN ANALISIS PENGARUH JARAK DVA, KECEPATAN, DAN KEDALAMAN CELAH TERHADAP SIMPANGAN MAKSIMUM RESPON GETARAN PADA GERBONG KERETA API ARAH ROTASI DAN TRANSLASI,” Prosiding Seminar Nasional Sains dan Teknologi Terapan, vol. 9, no. 1, pp. 470–477, Oct. 2021.

A. Setiawan and A. Noerpamoengkas, “Pemodelan dan Analisis Pengaruh Rasio Jarak dan Rasio Massa DVA Terhadap Respon Massa Utama dengan Dual-DVA Ganda,” Prosiding SENASTITAN: Seminar Nasional Teknologi Industri Berkelanjutan, vol. 2, no. 0, pp. 346–355, Mar. 2022.

R. Efendi, A. Noerpamoengkas, and H. S. Maulana, “Studi Eksperimental Pengaruh Panjang Penyangga Magnet pada Getaran Batang dengan Eddy Current Tuned Mass Damper,” Jurnal Teknologi dan Manajemen, vol. 2, no. 1, pp. 1–6, Mar. 2021.

N. Irfani, A. Noerpamoengkas, and I. Bagus, “Studi Eksperimental Pengaruh Radius Lintasan dan Massa Bola Terhadap Respon Getaran Model Bangunan Berperedam Bola,” in Prosiding SENASTITAN: Seminar Nasional Teknologi Industri Berkelanjutan, Mar. 2021, vol. 1, no. 1, p. 415.

M. Farid and A. Noerpamoengkas, “Studi Eksperimental Pengaruh Panjang Lengan Massa Pemberat Dan Panjang Lengan Magnet Terhadap Respon Pendulum Lengan Ganda Dengan Peredam Arus Eddy,” in Seminar Nasional Teknologi Industri Berkelanjutan, 2022, pp. 367–372.

D. U. Suwarno, “Getaran osilasi teredam pada pendulum dengan magnet dan batang aluminium,” Seminar Kontribusi Fisika, 2015.

N. Nurlaili and S. Sumardi, “Pengaruh redaman meda magnit terhadap ayunan von waltenhoven dan piringan logam berputar,” Jurnal POLIMESIN, vol. 2, no. 1, p. 99, Sep. 2019.

N. P. G.V., G. S., V. K.G., and A. C. Dixit, “An Analysis of Permanent Magnet Eddy Current Braking System,” International Journal of Mechanical and Production Engineering Research and Development, vol. 9, no. 4, pp. 23–38, 2019.

M. R. A. Putra, M. Nizam, D. D. D. P. Tjahjana, and A. R. Prabowo, “Mini Review on Eddy Current Brakes Parameter,” IOP Conf Ser Mater Sci Eng, vol. 1096, no. 1, p. 012027, Mar. 2021.

“Neodymium Magnet Grades | Stanford Magnets.” https://www.stanfordmagnets.com/neodymium-magnet-grades.html (accessed Sep. 12, 2022).

“Grades of Ferrite Magnets | Stanford Magnets.” https://www.stanfordmagnets.com/grades-of-ferrite-magnets.html (accessed Sep. 12, 2022).

Refbacks

  • There are currently no refbacks.