Studi Eksperimental Pengaruh Panjang Lengan Massa Pemberat Dan Panjang Lengan Magnet Terhadap Respon Pendulum Lengan Ganda Dengan Peredam Arus Eddy

Mohammad Farid, Ardi Noerpamoengkas

Abstract

Eddy current damping mechanism can be used in pendulum vibration systems by placing a magnet on the pendulum arm and bringing it close to a metal plate. This study uses a new pendulum model by separating the load mass and the magnet on two separate pendulum arms. The length of the load mass arm and the length of the magnet arm are varied. The magnet is brought close to the copper plate to get the Eddy current. The pendulum response was recorded with a video camera and processed using Tracker software. The results of data processing are the first response amplitude and the settling time. The shorter the arm of the load mass and the longer the magnetic arm, the smaller the first response amplitude and the faster the settling time.

Kata kunci: Damper, Eddy current, pendulum, vibration.

References

S. S. Rao, Mechanical Vibrations, 5th ed. Upper Saddle River: Pearson Education, Inc, 2011.

M. A. Abdel-Hafiz and G. A. Hassaan, “Minimax Optimization Of Dynamic Pendulum Absorbers For A Damped Primary System,” Int. J. Sci. Technol. Res., vol. 3, no. 9, 2014.

W. Wang, Z. Yang, X. Hua, Z. Chen, X. Wang, and G. Song, “Evaluation of a pendulum pounding tuned mass damper for seismic control of structures,” Eng. Struct., vol. 228, p. 111554, Feb. 2021.

H. E. Abd-El-Mottaleb and T. A. Sakr, “Multiple Connected Pendulum TMD (MCPTMD) For Vibration Control of Structures,” Int. J. Sci. Technol. Res., vol. 10, no. 05, pp. 266–273, 2021.

G. B. Colherinhas, M. A. M. Shzu, S. M. Avila, and M. V. G. D. Morais, “Wind Tower Vibration Controlled by a Pendulum TMD using Genetic Optimization: Beam Modelling,” Procedia Eng., vol. 199, pp. 1623–1628, Jan. 2017.

V. J. García, E. P. Duque, J. A. Inaudi, C. O. Márquez, J. D. Mera, and A. C. Rios, “Pendulum tuned mass damper: optimization and performance assessment in structures with elastoplastic behavior,” Heliyon, vol. 7, no. 6, p. e07221, Jun. 2021.

F. Dos, S. Oliveira, J. L. V De Brito, and S. M. Avila, “Design criteria for a pendulum absorber to control high building vibrations,” 11th Int. Conf. Vib. Probl., 2013.

G. B. Colherinhas et al., “Genetic optimization analysis of wind tower vibrations controlled by a pendulum TMD,” Rev. Interdiscip. Pesqui. em Eng., vol. 2, no. 13, pp. 103–119, Jan. 2017.

G. B. Colherinhas, M. A. M. Shzu, S. M. Avila, and M. V. G. De Morais, “A parametric study of a tower controlled by a pendulum tuned mass damper: beam modelling,” MATEC Web Conf., vol. 211, p. 14006, Oct. 2018.

S. Hassani and M. Aminafshar, “Optimization of pendulum tuned mass damper in tall building under horizontal earthquake excitation,” Bull. la Société R. des Sci. Liège [En ligne], vol. 85, pp. 514–531, Jan. 2016.

L. D. Viet, N. D. Anh, and H. Matsuhisa, “Vibration control of a pendulum structure by a dynamic vibration absorber moving in both normal and tangential directions,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 225, no. 5, pp. 1087–1095, Apr. 2011.

L. Duc Viet and Y. Park, “Vibration control of the spherical pendulum by dynamic vibration absorber moving in radial direction,” in Proceedings of the Korean Society for Noise and Vibration Engineering Conference, 2010, pp. 83–88.

M. F. Younes, “Numerical study for dynamic vibration absorber using Coriolis force for pendulum system,” J. Am. Sci., vol. 11, no. 12, 2015.

M. F. Younes, “Optimal Design of Dynamic Vibration Absorber for Rolling Systems,” 18th Int. Conf. Appl. Mech. Mech. Eng., 2018.

L. D. Viet and Y. Park, “Vibration control of the axisymmetric spherical pendulum by dynamic vibration absorber moving in radial direction,” J. Mech. Sci. Technol. 2011 257, vol. 25, no. 7, pp. 1703–1709, Jul. 2011.

A. Noerpamoengkas, H. L. Guntur, and S. Y. Zamrisyaf, “Modeling Flat Pendulum and Simulating Its Validation at The Pendulum-Flat Pontoon Model Sea Wave Electric Generator Application.” Institut Teknologi Adhi Tama Surabaya, Jurnal IPTEK, 2013.

A. Noerpamoengkas and M. Ulum, “PEMODELAN GERAK PENDULUM VERTIKAL PADA KONVERTER ENERGI GELOMBANG BERINERSIA TAMBAHAN SAAT RESONANSI,” J. IPTEK, vol. 21, no. 1, pp. 61–68, May 2017.

A. Noerpamoengkas and M. Ulum, “Pemodelan Pengaruh Frekuensi dan Amplitudo Eksitasi terhadap Respon Gerak dan Daya Mekanis Pendulum Vertikal pada Konverter Energi Gelombang Laut,” in Seminar Nasional Sains dan Teknologi Terapan III, 2015, pp. 201–210.

R. Efendi, A. Noerpamoengkas, and H. S. Maulana, “Studi Eksperimental Pengaruh Panjang Penyangga Magnet pada Getaran Batang dengan Eddy Current Tuned Mass Damper,” J. Teknol. dan Manaj., vol. 2, no. 1, pp. 1–6, Mar. 2021.

N. P. G.V., G. S., V. K.G., and A. C. Dixit, “An Analysis of Permanent Magnet Eddy Current Braking System,” Int. J. Mech. Prod. Eng. Res. Dev., vol. 9, no. 4, pp. 23–38, 2019.

M. R. A. Putra, M. Nizam, D. D. D. P. Tjahjana, and A. R. Prabowo, “Mini Review on Eddy Current Brakes Parameter,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1096, no. 1, p. 012027, Mar. 2021.

N. Irfani, A. Noerpamoengkas, I. Bagus, J. T. Mesin, T. Adhi, and T. Surabaya, “Studi Eksperimental Pengaruh Radius Lintasan dan Massa Bola Terhadap Respon Getaran Model Bangunan Berperedam Bola,” in Prosiding SENASTITAN: Seminar Nasional Teknologi Industri Berkelanjutan, Mar. 2021, vol. 1, no. 1, p. 415.

D. U. Suwarno, “Getaran osilasi teredam pada pendulum dengan magnet dan batang aluminium,” Semin. Kontribusi Fis., 2015.

N. Nurlaili and S. Sumardi, “Pengaruh redaman meda magnit terhadap ayunan von waltenhoven dan piringan logam berputar,” J. POLIMESIN, vol. 2, no. 1, p. 99, Sep. 2019.

Zulkarnain, Erwin, and R. Sawitri, “Studi Gejala Arus Eddy Pada Plat Alumunium Menggunakan Solenoid Silinder,” Komun. Fis. Indones., vol. 12, no. 11, pp. 745–751.

Refbacks

  • There are currently no refbacks.