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Abstrak 

Support Vector Machine atau SVM classifier merupakan salah satu algoritma machine learning 

yang bertugas memprediksi data. Pengklasifikasi tradisional memiliki keterbatasan dalam proses 

pelatihan data skala besar, cenderung lambat. Penelitian ini bertujuan untuk meningkatkan efisiensi 

pengklasifikasi SVM menggunakan algoritma optimasi penurunan gradien fraksional, sehingga 

kecepatan proses pelatihan data dapat ditingkatkan saat menggunakan data skala besar. Terdapat 

sepuluh kumpulan data numerik yang digunakan dalam simulasi yang digunakan untuk menguji 

kinerja classifier SVM yang telah dioptimasi menggunakan algoritma fractional gradient descent 

tipe Caputo. Dalam makalah ini, kami menggunakan rumus turunan Caputo untuk menghitung 

penurunan gradien orde pecahan dari fungsi kesalahan terhadap bobot dan memperoleh 

konvergensi deterministik untuk meningkatkan kecepatan konvergensi turunan orde pecahan tipe 

Caputo. Hasil pengujian menunjukkan bahwa pengklasifikasi SVM yang dioptimalkan mencapai 

waktu konvergensi yang lebih cepat dengan iterasi dan nilai kesalahan yang kecil. Untuk penelitian 

selanjutnya, pengklasifikasi linier SVM yang dioptimalkan dengan penurunan gradien fraksional 

diimplementasikan pada masalah data kelas yang tidak seimbang. 

Kata Kunci: SVM Classifier, Fractional Gradient Based, Nonlinear Separable Data 

Abstract 

The Support Vector Machine or SVM classifier is one of the machine learning algorithms whose 

job is to predict data. Traditional classifier has limitations in the process of training large-scale data, 

tends to be slow. This study aims to increase the efficiency of the SVM classifier using a fractional 

gradient descent optimization algorithm, so that the speed of the data training process can be 

increased when using large-scale data. There are ten numerical data sets used in the simulation that 

are used to test the performance of the SVM classifier that has been optimized using the Caputo type 

fractional gradient descent algorithm. In this paper, we use the Caputo derivative formula to 

calculate the fractional-order gradient descent from the error function with respect to weights and 

obtain a deterministic convergence to increase the speed of the Caputo type fractional-order 

derivative convergence. The test results show that the optimized SVM classifier achieves a faster 

convergence time with iterations and a small error value. For further research, the optimized SVM 

linear classifier with fractional gradient descent is implemented on the problem of unbalanced class 

data. 
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1. Introduction (bold, style = Heading 1) 

In machine learning, using large-scale data to recognize patterns in the data that can be used for 

predictive activities. Supervised learning or supervised learning is one of the methods in machine 

learning that divides data into training data and test data. By doing learning on large-scale training data, 

it is hoped that you will get a learning model that will be used on the test data. This learning model will 

be used on new data and it is hoped that the model can make predictions [1]. The supervised learning 

method consists of several algorithms, including; Nearest Neighbour, Naive Bayes, Decision Trees, 
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Linear Regression, Logistic Regression, Support Vector Machines and Neural Networks. Not all of these 

algorithms are capable of processing large-scale data, some of which have the ability to process large-

scale data takes a long time [2].  

In large-scale data training activities, SVM as a linear classification method faces challenges 

with sluggish convergence and a little number of data [3][4]. SVM also has a flaw in that identifying the 

ideal parameters is challenging [5]. As a result, convex optimization is used to address the SVM linear 

classifier's optimization problem, which is directly related to the large-scale data training process. Time-

consuming matrix operations are occasionally required in large-scale training approaches. This has to 

do with the size of the matrix, which keeps growing or becomes unworkable due to memory restrictions 

[6]. The large-scale data training of the SVM linear classifier is a convex optimization problem that 

scales with the size of the training set rather than the dimensions of the feature space. Data training 

efforts on a broad scale will become impractical as a result of this [7]. 

An unconstrained optimization technique is required for SVM classifiers for information 

preparation forms. The gradient-based unconstrained optimization technique is especially successful in 

terms of computing time speed for large-scale information sets, according to the research [8][9]. There 

have been a number studies on how to improve the gradient-based SVM demonstration, including 

optimization using the stochastic gradient descent approach. Furthermore, sub-gradient descent is 

included in optimization algorithms for gradient-based SVM models, which makes descent easier [10]. 

When dealing with huge data sets, both methodologies have been found to give substantial advantages 

over traditional approaches. There is a fractional gradient descent optimization method for optimization 

without constraints other than stochastic gradient descent. Fractional gradient descent is a constraint-

free optimization method that has been shown to solve large-scale training optimization problems for 

linear classifier algorithms like neural networks [11]. 

Many studies using fractional-order derivatives have been carried out, several types of 

fractional-order derivatives other than Caputo include the Riemann–Liouville type fractional-order, the 

Grünwald–Letnikov type fractional-order, and the Atangana-Baleanu type fractional-order which is a 

fractional-order derivative type. which is widely used. For the problem of convergence and convergence 

speed, it is solved by using a fractional-order derivative of the Caputo type [12][13]. In this paper, using 

the Caputo derivative formula to calculate the fractional-order gradient descent of the error function 

with respect to weights and obtaining deterministic convergence to increase the convergence speed of 

the Caputo-type fractional-order derivative has more applications in physical processes and engineering 

problems [14][15]. 

This paper has the following research questions: First: how does the proposed fractional 

gradient-based optimization method affect the improvement of the convergence time, the improvement 

of the error value and the number of iterations in the training data activity? Second: how to determine 

the learning rate and fractional order parameters given for optimizing the convergence time, improving 

the error value and the number of iterations in training data activities? There are ten numerical data sets 

used in the simulation that are used to test the performance of the SVM classifier that has been optimized 

using the Caputo type fractional gradient descent algorithm. 

1.1. Support Vector Machine Classifier Problem 

The SVM classifier solves optimization problems using an algorithm or solver with the purpose 

of estimating the values of w and b. We can use a quadratic solver for the first stage of reducing the 

quadratic function that is subject to linear constraints. The problem is that the solver is inefficient when 

dealing with big amounts of data, so we use an alternative approach. The convex function can be 

minimized. 

 

𝑓(𝑤, 𝑏) =  
1

2
 ∑ (𝑤(𝑗))

2𝑑
𝑗=1 + 𝐶 ∑ max{0,1 − 𝑦𝑖  (𝑤 ∙ 𝑥𝑖 + 𝑏)}𝑛

𝑖=1                                               (1) 

 

The convex function's gradient descent is fairly simple; half is the sum of all the coordinates 

over all the dimensions of the square of the value of 𝑤. Calculating (𝑗) takes 𝑂(𝑛) time, which is an 
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issue. Optimization based gradient especially stochastic gradient descent is an important approach to 

very large-scale machine learning problems and challenges for which exact gradients are difficult to 

calculate. This shows that stochastic gradient descent has a sub-linear convergence level of 𝑂(
1

𝑡
) in the 

case of highly convex and 𝒪 (
1

√𝑡
) general convex classifier objective functions, where t is the number 

of iterations. This will be the basis of the algorithm that will be offered in this paper. General 

optimization problem formulation, start from the optimization problem in the following standard form: 

Minimizing f0 (x) with constraint fi (x) ≤ 0, i = 1, … , m  

         hi (x) = 0, i = 1, … , p 

with fi, hi: R
n  → R; x is the optimization variable; 

f0  is an objective function or a cost function; fi (x) ≤ 0 is the inequality constraint. 

Geometrically, this problem is concerned with minimizing f0 , over a set described as the intersection of 

the sublevel-0 set of fi , {where the region is described by the solution set-0 of hi, ∀i. 
The feasible set C is the set of all feasible points, and the problem is feasible if there is a viable 

point. The problem is said to be infinite if m = p = 0. The optimal value is denoted by f ∗ =
infx∈C f0(x),  and f ∗ =  +∞  if the problem is not feasible. A point x ∈ C is an optimal point if f(x) =
 f ∗ and the optimal set is Xopt = {x ∈ C|f(x) =  f ∗} implicitly the constraint can be expressed as: x ∈

dom fi, x ∈ dom hi , which must be in a set D = dom f0  ∩ dom fm  ∩ dom h1  ∩ … ∩ dom hp  called 

the problem domain.  

A feasible problem is a special case of the standard problem, which is a search for any feasible 

point. Then the real problem is look for x ∈ C or specify C =  ∅. 

An optimization problem in standard form is a convex optimization problem if f0, f1, … , fm are 

all convex, and hi are all affine: 

Minimizing f0(x) with constraints fi (x) ≤ 0, i = 1, … , m 

 

ai
T x − bi = 0, i = 1, … , p.                    (2) 

This problem is often written in the form   

Minimizing f0(x) with constraints fi (x) ≤ 0, i = 1, … , m 

Ax = b  with A ∈ Rp×n and b = Rp                                 (3) 

The convex optimization problem has three key characteristics that distinguish it from non-

convex optimization problems: 

There are no local minima because every local optimum is also a global optimum. 

Uncertain impropriety detection: the algorithm is easier to determine using the duality theorem. 

When deciding really large issues, the numerical solution method is effective. 

To understand the global optimality in convex problems, consider that x ∈ C is a local optimal 

if it satisfies  

y ∈ C, ‖y − x‖ ≤ R →  f0 (y) ≥ f0 (x)                                                 (4) 

for a R > 0. A point x ∈ C global optimal means that y ∈ C →  f0 (y) ≥ f0 (x) 

For the convex optimization problem, any local solution is also a global solution. This can be 

proven: Suppose x the local optimal, but exists y ∈ C, with f0 (y) ≥ f0 (x). Then we can take a small 

step from x to y  is z =  λy + (1 − λ)x  with a small λ = 0. Then z  is close to  , with f0 (z) ≥ f0 (x) 

which contradicts the local optimal. 

There is also a first order condition to determine the optimization of the convex optimization 

problem. Suppose f0  it is differentiable, then x ∈ C is optimal if and only if 

y ∈ C →  ∇f0 (x)T(y − x) ≥ 0.                                                     (5) 

Thus −∇f0 (x) defines the hyper support plane for C at x. That is, if it moves from along the x 

worth to  y another, f0 it doesn't go down. 

2. Method 

Caputo's Derivative Fractional. There are several definitions used for fractional derivatives. The 

three most common definitions of fractional calculus are Grunwald-Letnikov (GL), Riemann-Liouville 
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(RL), and Caputo. Caputo's fractional-order derivative. The definition of Caputo's fractional-order 

derivative of order is defined as follows. 

 

𝐷𝑎
𝐶𝑎𝑝𝑢𝑡𝑜

𝑡
𝛼  𝑓(𝑡) =  

1

Г(𝑛−𝛼)
 ∫ (𝑡 − 𝜏)𝑛−𝛼−1𝑡

𝑎
 𝑓(𝑛) (𝜏)𝑑𝜏 ,                            (6) 

 

where 𝐷𝑎
𝐶𝑎𝑝𝑢𝑡𝑜

𝑡
𝛼  𝑖𝑠 𝑎 𝐶𝑎𝑝𝑢𝑡𝑜 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟, α is fraksional order.  

 

Because the initial values of fractional differential equations with Caputo derivatives and integer 

differential equations are the same, these derivatives can be used to solve a wide range of physical and 

engineering issues. In this study, only used Caputo's fractional order derivative to evaluate the SVM 

training algorithm for gradient-based optimization with fractional-order. Used the idea 𝐷𝑎 𝑡
𝛼  of showing 

Caputo's fractional-order operator. Fractional order calculus is a natural generalization of classical 

integer calculus. The flow of the SVM Fractional Gradient Descent algorithm begins with; 

Given a training set S = {(𝑥𝑖, 𝑦𝑖)}, 𝑥 ∈  ℝ𝑛, 𝑦 ∈ {−1,1} 

Initialization 𝑤° = 0 ∈ ℝ𝑛 

For epoch = 1 ...T: 

Take a random sample (𝑥𝑖 , 𝑦𝑖) from the training set S 

Consider the random sample (𝑥𝑖 , 𝑦𝑖) as a complete data set and calculate the derivative of the 

current SVM objective function 𝑤𝑡−1 to 𝐷𝑎
𝐶𝑎𝑝𝑢𝑡𝑜

𝑡
𝛼  ∇J𝑡(𝑤𝑡−1 ) 

J𝑡  (𝑤) =  
1

2
 𝑤𝑇𝑤 + 𝐶 max(0,1 −  𝑦𝑖 𝑤𝑇𝑥𝑖) 

Change: 𝑤𝑡 ←  𝑤𝑡−1 −  𝛾𝑡 𝐷𝑎
𝐶𝑎𝑝𝑢𝑡𝑜

𝑡
𝛼∇J𝑡(𝑤𝑡−1 ) 

 

Display the final value of w 

The initial activity carried out was to collect raw data to be used, in this study ten non-linear 

datasets were used. The next activity is data pre-processing, eliminating data that has no value in its 

feature variable or on its class variable, which is referred to as the missing value problem. This is done 

because the SVM classifier algorithm is very sensitive to data with missing value problems. Then cross 

validation is carried out, namely the activity of dividing the data into training data and test data. 

Then run the RBF kernel on the SVM classifier for non-linearly separable data and generate a 

classification model. The classification model will be optimized with fractional gradient descent of the 

Caputo type, followed by the implementation of the optimized model on the test data and an evaluation 

is carried out with the result in the form of an evaluated model. The last activity of the optimized and 

evaluated model is implemented on the new data. 

In the optimization procedure of fractional gradient descent on the SVM classifier as follows: 

determine the objective function of SVM primal form without/with var penalty, determine the value of 

w for the SVM classifier, determine how many parameters C/slack variable (0.01; 0.0001) is used, 

determine the fold value for cross validation, determine the value of the learning rate (0.01; 0.001; 

0.0001; 0.00001) for the calculation of SVM fractional gradient descent, construct the matrix, perform 

the SVM fractional gradient descent calculation process and assign the order fractional value (0.25; 

0.50; 0.75), and determine the iteration scale 1000 for each given learning rate. Then a simulation of the 

performance of the Caputo type fractional gradient descent optimization method will be carried out on 

ten non-linear data. 

3. Results and Discussion 

In this section we have implemented the SVM fractional gradient descent classifier on ten 

nonlinear datasets. As shown in table 1, ten nonlinear datasets are available in UCI machine learning, 

consisting of the Weather dataset, an Australian weather dataset that has 5000 instances and 20 

attributes. Abalone dataset is abalone species dataset with 4177 instances and 8 attributes. There are five 

datasets with 1000-1500 instances, including Wine, Yeast, Hepatitis, Garment and Credit datasets with 
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the highest number of attributes, namely 29 in the Hepatitis dataset. And three datasets with seven 

hundred instances such as Energy, Diabetes and Parkinson's datasets. 

   Table 1. Convergent time for SVM with Fractional Gradient Descent 

No Dataset Instance Attribute Convergent Time Iteration 

1 Weather 5000 20 1.0273133 5 

2 Abalone 4,177 8 2.9198207 17 

3 Wine 1,599 12 0.01353414 10 

4 Yeast 1,484 8 0.0823195 9 

5 Hepatitis 1,385 29 0.064316 12 

6 Garment 1,197 15 0.1379931 9 

7 Credit 1,000 21 0.0902139 11 

8 Energy 768 18 0.0493378 10 

9 Diabetes 768 8 0.0979759 13 

10 Parkinson 756 14 0.0574224 13 

 

From table 1, it can be seen that the Abalone dataset takes the most time, then the Weather 

dataset is ordered, then the Garment, Diabetes, Credit, Yeast, Hepatitis, Parkinson, Energy dataset and 

the fastest is the Wine dataset. Diabetes dataset even though the number of instances is 768 and attribute 

8 requires a long convergence time compared to the Wine dataset with the number of instances of 1599 

and attribute 12. 

Figure 1 shows the convergence time of the SVM classifier that has been optimized with 

Fractional Gradient Descent. The parameter values of the SVM classifier and the Fractional Gradient 

optimizer have been implemented for ten nonlinear datasets. For the slack parameter in the SVM 

classifier, we assign a value of 0.0001 to get the smallest error value at the convergence point. The 

learning rate parameter for our gradient-based optimizer gives a value of 0.01 for the most optimal 

results. As well as providing a value of order 0.50 for the Caputo type fractional order for optimal results 

 
Figure 1. Convergent time SVM Fractional Gradient Descent 
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Figure 2. Comparison Convergent time 

 

From figure 2 it can be seen that a dataset with a large number of instances takes a lot of time 

to reach the convergent point. The simulation results with ten nonlinear datasets show that the SVM 

classifier with fractional gradient optimization reaches the convergence point in a faster time than the 

traditional SVM classifier. The smallest convergence time occurs in the Wine dataset with 1,599 

instances and 12 attributes. The largest convergence time occurs in the abalone dataset with 4,177 

instances and 8 attributes. The difference in convergence time for datasets with a smaller number of 

instances with a large number of instances is 97%. The difference in convergent time of SVM-FGD and 

SVM-SGD is greater than 90% for ten nonlinear datasets. This shows that the optimization of fractional 

gradient descent on the SVM classifier is able to increase the convergence time. 

4. Conclussion 

Ten nonlinear datasets were employed in this investigation. The performance of the SVM 

classifier with fractional gradient optimization is evaluated using this dataset. The SVM classifier with 

fractional gradient optimization reaches the convergence point 90 percent faster than the classic SVM 

classifier, according to simulation data. The classic SVM classifier takes more iterations to reach the 

convergence point than the SVM classifier with fractional gradient optimization. This has an impact on 

the training data processing's computing speed. We plan to use an SVM classifier with fractional 

gradient optimization for nonlinear datasets with unbalanced classes in future research. 
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