Analisis Sentimen Calon Gubernur DKI Jakarta 2017 Di Twitter

Ghulam Asrofi Buntoro


Abstract. Jakarta Governor Election 2017 discussed in society or internet, especially Twitter. Everyone is free opine on Jakarta governor candidate 2017 so many opinions, not only positive or neutral opinion but also negative. Social media, especially Twitter now become promotions or campaigns are effective and efficient. This research is expected be useful to conduct on public opinion containing sentiment positive, neutral or negative. The method used in this study, for data preprocessing using tokenisasi, cleansing and filtering, to define class sentiment with methods Lexicon Based. For classification using Naive Bayes classifier (NBC) and Support Vector Machine (SVM). The data is 300 tweet in Indonesian by keyword AHY, Ahok, Anies. The results of research is analysis sentiment Jakarta governor candidate 2017. The highest accuracy when using the method of classification Naïve Bayes Classifier (NBC), with average 95% accuracy, 95% precision, 95% recall, TP rate 96,8% and TN rate 84,6%.

Keywords: analisis sentimen, jakarta governor candidate 2017, lexicon based, naïve bayes classifier, support vector machine

Abstrak. Pemilihan Gubernur DKI Jakarta 2017 ramai diperbincangkan di dunia nyata maupun dunia maya, khususnya di media sosial Twitter. Semua orang bebas berpendapat atau beropini tentang calon Gubernur DKI Jakarta 2017 sehingga memunculkan banyak opini, tidak hanya opini yang positif atau netral tapi juga yang negatif. Media sosial khususnya Twitter sekarang ini menjadi salah satu tempat promosi atau kampanye yang efektif dan efisien. Penelitian ini diharapkan dapat bermanfaat membantu untuk melakukan riset atas opini masyarakat yang mengandung sentimen positif, netral atau negatif. Metode yang digunakan dalam penelitian ini, untuk preprocessing data menggunakan tokenisasi, cleansing dan filtering, untuk menentukan class sentimen dengan metode Lexicon Based. Untuk proses klasifikasinya menggunakan metode Naïve Bayes Classifier (NBC) dan Support Vector Machine (SVM). Data yang digunakan adalah tweet dalam bahasa Indonesia dengan kata kunci AHY, Ahok, Anies, dengan jumlah dataset sebanyak 300 tweet. Hasil dari penelitian ini adalah analisis sentimen terhadap calon gubernur DKI Jakarta 2017. Akurasi tertinggi didapat saat menggunakan metode klasifikasi Naïve Bayes Classifier (NBC), dengan nilai rata-rata akurasi mencapai 95%, nilai presisi 95%, nilai recall 95% nilai TP rate 96,8% dan nilai TN rate 84,6%.

Kata Kunci: analisis sentimen, calon gubernur dki jakarta 2016, lexicon based, naïve bayes classifier, support vector machine

Full Text:



ARFF files from Text Collections.

Class StringToWordVector.

Franky dan Manurung, R., (2008). Machine Learning-based Sentiment Analysis of Automatic Indonesia n Translations of English Movie Reviews. In Proceedings of the International Conference on Advanced Computational Intelligence and Its Applications.

G. A. Buntoro, T. B. Adji, and A. E. Purnamasari, (2014). “Sentiment Analysis Twitter dengan Kombinasi Lexicon Based dan Double Propagation,” in The 6th Conference on Information Technology and

Electrical Engineering (CITEE), 2014, pp. 39-43

Go, A., Huang, L., & Bhayani, R. (2009). Twitter Sentiment Analysis. Final Project Report, Stanford University, Department of Computer Science.

G. A. Buntoro, (2016). " Sentiment Analysis Candidates of Indonesian Presiden 2014 with Five Class Attribute" in International Journal of Computer Applications (0975 – 8887), Volume 136 – No.2, February 2016.

Ian H. Witten. (2013) Data Mining with WEKA. Department of Computer Science University of Waikato New Zealand.

J. Ariawan, “Data Preprocessing.” [Online]. Available: [Accessed: 10-Des-2016].

Jennifer Yang Hui (2014). Indonesian Presidential Election: Will Social Media Forecasts Prove Right?

Kohavi, & Provost. (1998) Confusion Matrix

KPUD DKI Jakarta (2016) Agenda Pemilihan Gubernur DKI Jakarta

Liu, B., Hu, M., dan Cheng, J. (2005). Opinion observer: analyzing and comparing opinions on the Web. In Proceedings of the 14th international conference on World Wide Web. ACM, hal. 342-351

Marian Radke Yarrow, John A. Clausen and Paul R. Robbins (2010). The Social Meaning of Mental Illness. Journal of Social Issues. Volume 11, Issue 4, pages 33–48, Fall 1955.

Mesut Kaya, Guven Fidan, Ismail H. Toroslu (2012). Sentiment Analysis of Turkish Political News. IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology.

M. Yusuf Nur Sumarno Putro, (2011). “Analisis Sentimen pada Dokumen Berbahasa Indonesia dengan Pendekatan Support Vector Machine,” masters, binus.

Noviah Dwi Putranti, Edi Winarko (2014).”Analisis Sentimen Twitter untuk Teks Berbahasa Indonesia dengan Maximum Entropy dan Support Vector Machine”

N. Adiyasa, “Analisis Sentimen Pada Opini Berbahasa Indonesia Menggunakan Pendekatan Lexicon-Based,” Catatan Kecil, 2011. [Online]. Available:

Olson, David L.; & Delen, Dursun (2008); Advanced Data Mining Techniques, Springer, 1st edition (February 1, 2008), page 138, ISBN 3-540-76916-1.

Pak, A., dan Paurobek, P., (2010). Twitter as a Corpus for Sentiment Analysis and Opinion Mining, Universite de Paris-Sud, Laboratoire LIMSI-CNRS.

Pang, B., Lee, L., & Vithyanathan, S. (2002). Thumbs Up? Sentiment Classification Using Machine Learning Techniques. Proceedings of The ACL-02 conference on mpirical methods in natural language processing (pp. 79-86).

Read, J. (2005). Using Emoticons to reduce Dependency in Machine Learning Techniques for Sentiment Classification. Meeting of the Associationfor Computational Linguistics - ACL, 43.1-6.

Tala, F. Z. (2003). A Study of Stemming Effects on Information Retrieval in Bahasa Indonesia. M.S. thesis. M.Sc. Thesis. Master of Logic Project. Institute for Logic, language and Computation. Universiteti van Amsterdam The Netherlands.

Top Media Sosial [Accessed: 10-Des-2016].

Yufis Azhar, Agus Zainal Arifin, Diana Purwitasari. 2013. ”Otomatisasi Perbandingan Produk Berdasarkan Bobot Fitur pada Teks Opini”.


  • There are currently no refbacks.