Rony Prabowo, Juvinal Lucas Monteiro, Lukmandono Lukmandono


Menurut Adedayo (2006) banyak situasi dalam hidup yang mengharuskan individu untuk melakukan aktivitas mengantri dimana secara umum mengantri digambarkan berbentuk garis lurus. Garis-garis yang terbentuk ini disebut sebagai garis tunggu atau antrian. Hensley (2012) menyatakn antrian terjadi ketika kapasitas layanan yang disediakan kurang dari permintaan layanan. Sanish (2007) meneliti aplikasi dari antrian untuk lalu lintas di New Mangalore Port dapat diterima sebagai metode yang tepat untuk memecahkan masalah kemacetan dengan kontribusi utama berupa model pola kedatangan dan pelayanan. Pola-pola ini umumnya digambarkan dengan acak yang sesuai distribusi. Pengamatan terhadap tingkat kedatangan kapal mengikuti distribusi eksponensial dan selama layanan waktu mengikuti distribusi Erlang atau Poisson.

Full Text:



Agerschou, H. and Korgaard, J. (2009). Systems Analysis for Port Planning. Dock and Harbor Authority, Vol. 49, pp. 411-415.

Barry, P.C. and Moshe, F.F. (2004) The Joint Distribution of Occurrences of Two Interrelated Poisson Processes. European Journal of Operational Research, Vol. 89, pp. 660-667.

Berg-Andreassen, J.A. and Prokopowicz, A.K. (2002). Conflict of Interest in Deep Draft Anchorage Usage Applications of QT. Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, 118 (1), pp.75-86.

Bose, I. and Pal, R. (2012). Average Waiting Time of Customers in a Priority M/D/k queue with finite buffers. Computers and Operations Research, 29, pp.327-339.

Chen, G., Kannan, G., Yang, Z., Choi, T. and Jiang, L. (2013). Terminal appointment system design by non-stationary M(t)/Ek/c(t) queueing model and genetic algorithm. International Journal of Production Economics 146 (2): 694–703.

Chen, G. and Yang, Z. (2010). Optimizing time windows for managing arrivals of export containers at Chinese container terminals. Maritime Economics and Logistics 210 (12): 111–126.

Chen, X., Zhou, X. and List, G.F. (2011). Using time-varying tolls to optimize truck arrivals at ports, Transportation Research, Part E. Logistics and Transportation Review 47 (6): 965–982.

Chydzi´nski, A. and Chr´ost, ?. (2011). Analysis of AQM queues with queue size based packet dropping. International Journal of Applied Mathematics and Computer Science 21 (3): 567–577.

Cosmetatos, G.P. (2006). Some approximate equilibrium results for the multi-server queue (M/G/r). Operational Research Quarterly 27 (3): 615–620.

Davidson, C. (1988). Equilibrium in service industries: An economic application of queuing theory. Journal of Business 61 (3): 347– 367.

De Weille, J. and Ray, A. (2004). The Optimum Port Capacity. Journal of Transport Economics and Policy, Vol. 8, No. 3, pp. 244-259.

Guan, C. Q. and Liu, R.F. (2009). Modeling maritime container terminal gate congestion, truck waiting cost, and optimization. Transportation Research Record: Journal of the Transportation Research Board 2100 (7): 58–67.

Hartmann, S. (2004). Generating scenarios for simulation and optimization of container terminal logistics. OR Spectrum 26 (2): 171–192.

Huang, W.C. and Wu, S.C. (2005). The Estimation of the Initial Number of Berths in a Port System Base on Cost Function. Journal of Marine Science and Technology, Vol. 13, No. 1, pp. 35-45.

Huynh, N., Walton, M.C. and Davis, J. (2004). Finding the number of yard cranes needed to achieve desired truck turn time at maritime container terminals. Transportation Research Record: Journal of the Transportation Research Board 1873 (12): 99–108.

Jones, J.H. and Blunden, W.R. (2008). Ship Turn-Around Time at the Port of Bangkok. Journal of the Waterways and Harbors Division, Vol. 94, No. 2, pp. 135-148.

Kia, M., Shayan, E., and Ghotb, F. (2002). Investigation of Port Capacity Under a New Approach by Computer Simulation. Computers & Industrial Engineering, Vol. 42, pp. 533-540.

Kim, S. (2009). The toll plaza optimization problem: Design, operations, and strategies. Transportation Research, Part E: Logistics and Transportation Review 45 (1): 125–137.

Kleinrock, L. (2005). Queueing Systems, Vols. 1 & 2. John Wiley and Sons, New York.

Kozan, E. (2007). Comparison of Analytical and Simulation Planning Models of Seaport Container Terminals. Transportation Planning and Technology, Vol. 20, pp. 235- 248.

Lawless, J.F. (2007). Regression Method for Poisson Process Data. Journal of the American Statistical Association, Vol. 82, pp. 808-815.

Liu, C.I., Jula, H. and Ioannou, P.A. (2002). Design, simulation, and evaluation of automated container terminals, IEEE Transactions on Intelligent Transportation Systems 3 (1): 12–26.

Mettam, J.D. (2007). Forecasting Delays to Ships in Port. Dock and Harbor Authority, Vol. 47, pp. 380-382.

Nicalau, S.N. (2007). Berth Planning by Evaluation of Congestion and Cost. Journal of the Waterways and Harbors, Vol. 93, Vol. 4, pp. 107-132.

Noritake, M. and Kimura, S. (2003). Optimum Number and Capacity of Seaport Berth. Journal of Watwerway Port Coastal and Ocean Engineering, Vol. 109, No. 3, pp. 323-329.

Plumlee, C.H. (2006). Optimum Size Seaport. Journal of Waterway and Harbors, Vol. 92, No. 3, pp. 1-24.

Radmilovi?, Z. (2013). Ship - Berth Link as Bulk Queueing System in Ports. Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, 118 (5), pp. 474-495.

Ravindran, A. (2007). Operations Research. John Wiley & Sons. New York.

Richard, L.S. (2006). Extreme Value Theory Based on the r Largest Annual Events. Journal of Hydrology, Vol. 86, pp. 27-43.

Sacone, S. and Siri, S. (2009). An integrated simulation-optimization framework for the operational planning of seaport container terminals. Mathematical and Computer Modelling of Dynamical Systems 15 (3): 275–293.

Shabayek, A. and Yeung, W. (2002). A simulation model for the Kwai Chung container terminals in Hong Kong. European Journal of Operational Research 140 (1): 1–11.

Sheldon, M.R. (2003). Introduction to Probability Models. Academic Press, Inc. New York.

Smith, J. (2010). Robustness of state-dependent queues and material handling systems. International Journal of Production Research 48 (16): 4631–4663.

Srivatsan, N. and Kempf, K. (1995). Effective modeling of factory throughput times. 17th IEEE/CPMT International Electronics Manufacturing Technology Symposium, Omiya, Japan, pp. 377–383.

Steute, F.W. (2005). Poisson Processes and a Bessek Function Integral. SIAM Review, Vol. 27, No. 1, pp. 73-77.

Taniguchi, E., Noritake, M., Yamada, T. and Izumitani, T. (1999). Optimal size and location planning of public logistics terminals. Transportation Research, Part E: Logistics and Transportation Review 35 (3): 207–222.

Thomas, S.S. (2001). An Analysis of the Trend in GroundLevel Ozone Using Non-Homogeneous Poisson Processes. Atmospheric Environment, Vol. 25B, No. 3, pp. 387-395.

UNCTAD. (2005). Port Development: a Handbook for Planners in Developing Countries. United Nations, New York (1985).

Wanhill, S.R.C. (2014). Further Analysis of Optimum Size Seaport. Journal of Waterway and Harbour Division, ASCE, 100 (4), pp.377-383.

Won, Y.Y. and Yong, S.C. (2009). A Simulation Model for Container- Terminal Operation Analysis Using an Object Oriented Approach. International Journal of Production Economics, Vol. 59, pp. 221-230.

Wu, J., Abbas-Turki, A. and Perronnet, F. (2013). Cooperative driving at isolated intersections based on the optimal minimization of the maximum exit time. International Journal of Applied Mathematics and Computer Science 23 (4): 773–785.

Xie, Y., Chowdhury, M., Bhavsar, P. and Zhou, Y. (2012). An integrated modeling approach for facilitating emission estimations of alternative fueled vehicles. Transportation Research, Part D: Transport and Environment 17 (1): 15–20.

Zrni?, Dj., Dragovi?, B. and Radmilovi?, Z. (2019). Anchorage: Ship - Berth Link as Multiple Server Queueing System. Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, 125 (5), pp.232-240, 1999.


  • There are currently no refbacks.

Katalog Buku Karya Dosen ITATS